

    
      
          
            
  
Langmuir’s documentation!


Contents:


	Installation

	Getting Started

	Specifying the plasma
	Quick computations of plasma parameters





	Specifying the geometry

	Characteristic models
	Analytical theories

	Normalization

	Finite length models

	Finite radius models





	Examples
	Numerically solving for the floating potential

	Fitting beta for a finite-length probe

	Interactive finite-length current profile

	Inferring plasma parameters from measurements





	Citing Langmuir

	Bibliography







Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Installation

Install from PyPI using pip (preferred method):

pip install langmuir





Or download the GitHub repository https://github.com/langmuirproject/langmuir.git and run:

python setup.py install








          

      

      

    

  

    
      
          
            
  
Getting Started

The Langmuir library contains a collection of functions that compute the current collected by a conductor immersed in a plasma according to various models (characteristics). These functions take as arguments the probe geometry, for instance Sphere, and a plasma, where a plasma may consist of one or more Species.

As an example, consider a spherical Langmuir probe of radius [image: r=1\,\mathrm{mm}] immersed in a plasma with an electron density of [image: n=10^{11}\,\mathrm{m^{-3}}] and an electron temperature of [image: T=1000\,\mathrm{K}]. The electron current collected by this probe when it has a voltage of [image: V=4.5\,\mathrm{V}] with respect to the background plasma is computed according to orbital motion-limited (OML) theory as follows:

>>> OML_current(Sphere(r=1e-3), Electron(n=1e11, T=1000), V=4.5)
-5.262656728335636e-07





Let’s consider a more complete example. Below we compare the current-voltage characteristics predicted by the OML theory and the finite-length (FL) model for a cylindrical probe with an ideal guard on one end.

from langmuir import *
import numpy as np
import matplotlib.pyplot as plt

plasma = [
    Electron(n=1e11, T=1000),
    Hydrogen(n=1e11, T=1000)
    ]

geometry = Cylinder(r=1e-3, l=60e-3, lguard=True)

V = np.linspace(-2, 2, 100)

I_OML = OML_current(geometry, plasma, V)
I_FL = finite_length_current(geometry, plasma, V)

plt.plot(V, -I_OML*1e6, label='OML')
plt.plot(V, -I_FL*1e6, label='FL')
plt.xlabel('V [V]')
plt.ylabel('I [uA]')
plt.legend()
plt.show()





[image: _images/basic.png]
This example demonstrates that accounting for edge effects on a probe of finite length leads to a larger collected current. Also note that the characteristic correctly captures both the electron saturation, the electron retardation, and the ion saturation regions. Beware that the current collected by Langmuir probes (thus going into it) is usually negative. It is common practice, however, to invert it prior to plotting.




          

      

      

    

  

    
      
          
            
  
Specifying the plasma

A species is specified using a range of keyword arguments upon initialization of a Species object, for instance:

Species(Z=1, amu=16, n=1e11, T=1000)





This is a singly charged ion ([image: Z=1]) with a mass of [image: 16\,\mathrm{AMU}] (atomic mass units), which corresponds to the most abundant oxygen isotope.
The density is [image: n=10^{11}\,\mathrm{m^{-3}}], and it is Maxwellian distributed with a temperature of [image: T=1000\,\mathrm{K}] and no drift-velocity.
The full set of keywords is given below:









	Quantity

	Keyword

	Units

	Default value





	Charge

	q

	Coulombs

	elementary
charge



	Z

	elementary charges



	Mass

	m

	kilograms

	electron
mass



	amu

	atomic mass units



	Density

	n

	partices per cubic meter

	[image: 10^{11}\,\mathrm{m^{-3}}]



	Temperature/thermal speed

	T

	Kelvin

	[image: 1000\,\mathrm{K}]



	eV

	electron-volts



	vth

	meters per second



	Spectral index kappa

	kappa

	dimensionless

	[image: \infty] (float('inf'))



	Spectral index alpha

	alpha

	dimensionless

	[image: 0]






Kappa, Cairns or Kappa-Cairns distributed particles are obtained by specifying kappa, alpha, or both, respectively. Maxwell, Kappa and Cairns distributions are all limiting cases of the Kappa-Cairns distribution [Darian].

For convenience, the following subclasses of Species exist:


	Electron


	Proton


	Positron


	Antiproton


	Vogon


	Hydrogen


	Helium


	Lithium


	and similar for the rest of the periodic table




The only difference from Species is that these have different default charge and mass to represent the named element. Oxygen for instance, defaults to singly charged oxygen of the most abundant isotope. Hence the example in the beginning of this section could also have been written:

Oxygen(n=1e11, T=1000)





Finally, a multi-species plasma is represented as a list of its constituents. A typical Oxygen plasma would for instance be:

plasma = [
    Electron(n=1e11, T=1000),
    Oxygen(n=1e11, T=1000)
    ]






Quick computations of plasma parameters

The Langmuir library is also suitable for doing quick computations of fundamental plasma parameters, since Species computes these upon initialization. One example is calculating the electron Debye length of a certain plasma:

>>> Electron(n=1e11, T=1000).debye
0.00690089806774598





The Species class defines the following useful members:







	Member

	Description





	debye

	The Debye length



	omega_p

	The angular plasma frequency



	freq_p

	The linear plasma frequency



	period_p

	The plasma period



	omega_c(B)

	The angular cyclotron frequency



	freq_c(B)

	The linear cyclotron frequency



	period_c(B)

	The cyclotron period



	larmor(B)

	The larmor radius






The latter four members are methods which take the magnitude of the magnetic flux density as an argument. In addition, every valid keyword argument of the constructor is also a valid member. This may conveniently be used for instance to convert a temperature from electron-volts to Kelvin:

>>> Species(eV=0.2).T
2320.9036243100163





In this case we only specified the input eV, since we know that temperature do not depend on density.

Finally, the total Debye length of a plasma consisting of multiple species can be obtained using the debye() function. For the oxygen plasma mentioned previously:

>>> debye(plasma)
0.004879671013271479





Note that Langmuir uses the correct expression for the Debye length also for general Kappa-Cairns distributed plasmas [Darian].





          

      

      

    

  

    
      
          
            
  
Specifying the geometry

Langmuir supports three probe geometries, with self-descriptive names:


	Plane(A) represents a planar probe with surface area A.


	Cylinder(r, l, lguard=0, rguard=0) represents a cylindrical probe of radius r and length l. The optional arguments lguard and rguard may be used to specify the length of the left and right guards, respectively. Setting them to float('inf') or True means that there is an ideal guard.


	Sphere(r) represents a spherical probe of radius r.




All dimensions are in SI units. Not all models may be able to support all geometries, and only the finite-length model makes use of the guard feature.




          

      

      

    

  

    
      
          
            
  
Characteristic models

Langmuir comes with several models for the characteristic [image: I(V)] of Langmuir probes. Each model is represented by a function which, in addition to the voltage V, take a geometry and a species argument. The models have similar signatures and can often be interchanged. geometry is one of the previously mentioned probe geometries (Plane, Cylinder or Sphere), and the species argument is either a single Species object, or a list of Species. If it is a single species, the return value is the current collected from that species alone. This may be sufficient in regimes where the current is dominated by the collection of one species. If the species argument it is a list of species, it is the sum of the currents from all species (there is currently no model which accounts for non-linear coupling between species). If both ions and electrons are included, the characteristics captures both the electron saturation, electron retardation and ion saturation regimes. The model functions also have arguments eta and normalization which will be covered in Normalization.


Contents:


	Analytical theories
	The orbital motion-limited (OML) theory

	Thermal currents and the sheath-limited (SL) theory





	Normalization

	Finite length models
	Current per unit length

	Total collected current

	Behind the curtains





	Finite radius models








          

      

      

    

  

    
      
          
            
  
Analytical theories


The orbital motion-limited (OML) theory

The orbital motion-limited (OML) theory is the de-facto standard theory for current collection of a Langmuir probe, and is implemented as the following function:

OML_current(geometry, species, V=None, eta=None, normalization=None)





Assuming a small probe radius compared to the Debye shielding distance, i.e., the thick sheath approximation, the current collected by a probe in a plasma can be calculated based on orbital trajectories within the sheath. The derivations of the implemented analytical expressions assumes:


	a collisionless plasma


	a non-drifting Kappa-Cairns-distributed plasma


	a non-magnetized plasma


	small probe radius (if spherical or cylindrical) compared to the Debye length


	large probe length (if cylindrical), or large extent (if planar) compared to the Debye length




It is worth remarking that the Maxwell, Kappa and Cairns distributions are special cases of the Kappa-Cairns distributions and are therefore also covered [Darian]. Moreover, no assumptions are made on the voltage range.

Radii up to 0.2 Debye lengths (for spherical probes) or 1.0 Debye lengths (for cylindrical probes) typically satisfy the small radius criterion well [Laframboise]. Cylindrical probes need to be very long, however, to satisfy the long probe criterion [Marholm]. Other models in Langmuir overcome some of the limitations of the OML theory.

For more information on OML theory, see [MottSmith] for the original derivation, or [Darian] for the more general derivation with Kappa-Cairns distribution.



Thermal currents and the sheath-limited (SL) theory

A probe at zero voltage with respect to the background plasma do not accelerate particles, but nevertheless collects a current due to the random thermal motion of particles through the surface of the probe. This is implemented in the following function:

thermal_current(geometry, species, normalization=None)





This coincides with the OML theory not only for zero voltage, but also for planar probes. This can be understood from the fact that for planar probes, the effective collection area (the sheath boundary) do not increase as the voltage increases and the sheath thickness increases, but remains of the same area.

The sheath-limited (SL) theory makes the same assumptions as the OML theory, except that the probe radius is large compared to the Debye length (thin sheath approximation). With these approximations, the current collected is [image: a/r] times the thermal current, where [image: a] is the distance from the center of the probe to the edge (in some sense) of the sheath surrounding the probe, and [image: r] is the probe radius. For spheres and cylinders an increase in voltage causes an increase in [image: a] and hence in collected current. Nevertheless, for very large probes, [image: a/r] approches unity, and thermal_current may be used as an approximation. In this case, the probe can be understod to be locally flat.





          

      

      

    

  

    
      
          
            
  
Normalization

The characteristics of Langmuir probes do not depend on every conceivable parameter such as density, temperature, probe length, etc. independently, but instead upon a smaller set of non-dimensional groups ([image: \pi]-groups) of such parameters [Laframboise], [Marholm]. One such group is the normalized voltage:


[image: \eta = -\frac{qV}{kT}]


where [image: q] and [image: T] are the charge and temperature of the collected species, [image: V] is the voltage, and [image: k] is Boltzmann’s constant (for [image: \eta>0] the species is attracted, and for [image: \eta<0] it is repelled). It may therefore be of interest to study an entire class of problems with the same normalized parameters instead of a specific case. In Langmuir one may specify normalized voltages by using the argument eta instead of V in models such as OML_current.

Similarly, a normalized current [image: I/I_0] may be defined, where [image: I] is the collected current and [image: I_0] is a characteristic current. The models in Langmuir may return currents normalized by one of several possible characteristic currents depending on the value of the normalization argument:


	'th': Normalized by the thermal current. Often the most natural choice.


	'oml': Normalized by the current according to the OML theory. This is useful for comparing other models with OML theory.


	'thmax':  Normalized by the thermal current of a Maxwellian plasma regardless of what the distribution actually is. This is the normalization used in [Darian].




Finally, all lengths are normalized by the Debye length [image: \lambda_D]. Below is a complete example of obtaining the normalized current for a cylindrical probe of radius [image: 0.2\lambda_D] and length [image: 10\lambda_D] with [image: \eta=10]:

>>> sp = Species()
>>> geometry = Cylinder(r=0.2*sp.debye, l=10*sp.debye)
>>> OML_current(geometry, sp, eta=10, normalization='th')
3.7388259506315147





Since only the non-dimensional groups determine the normalized collected current, we do not care about the exact parameters of the species, but leave them at the default. Note that in this case it actually does not matter what the probe size is, because the thermal current depends on the probe size in the same way as the current predicted by OML theory. This may differ for other models, however.

Note that the non-dimensional groups are specific to each species, e.g., the voltage normalized with respect to electrons is not the same as with respect to ions. If a multi-species plasma is specified, the normalization used will be with respect to the first species in the list. E.g., if electrons are the first element in the list, [image: \eta=eV/kT_e] where [image: e] is the elementary charge and [image: T_e] is the electron temperature.




          

      

      

    

  

    
      
          
            
  
Finite length models

The two finite-length models are based on theoretical scaling laws and numerical simulations, and accounts for edge effects on cylindrical probes. They assume a collisionless, non-magnetized and non-drifting Maxwellian plasmas, as well as a small probe radius. However, they can account for probes of arbitrary length, all the way down to below the Debye length (at which point the probes behave as if they were spherical). The models are valid for normalized voltages up to 100. See [Marholm] for a full description.


Current per unit length

The first model describes not the total collected current, but the current [image: i(z)] per unit length, as a function of the position [image: z] on the probe, and has the following signature:

finite_length_current_density(geometry, species, V=None, eta=None, z=None, zeta=None, normalization=None)





This model has an additional argument z, which is the position on the probe, starting at zero. Alternatively, one may use the normalized position zeta, defined as [image: \zeta=z/\lambda_D]. Below is an example for a 40-mm probe with both ends free:

from langmuir import *
import numpy as np
import matplotlib.pyplot as plt

elec = Electron(n=1e11, T=1000)
l = 40e-3
z = np.linspace(0,l,100)

geo = Cylinder(r=0.25e-3, l=l)
i = finite_length_current_density(geo, elec, V=5, z=z)

plt.plot(z*1e3, -i*1e6)
plt.xlabel('z [mm]')
plt.ylabel('i [nA/mm]')
plt.show()





[image: _images/profile.png]
The end effects from the two ends are quite severe, and they even overlap. In reality, however, one end of the probe must necessarily be attached to something, and this is usually a guard. Ideally, a guard is an infinite cylindrical extension of the probe at the same voltage as the probe, but electrically insulated from it, such that current collected by the guard is not included in the measurements. This is supposed to remove end effects from this end of the probe. It is possible to enable ideal guards by setting either lguard (left guard) or rguard (right guard) in Cylinder to True or float('inf'). In the modified example below, we include a guard to the left of the probe, and we also plot the current collected by the nearest part of the guard:

from langmuir import *
import numpy as np
import matplotlib.pyplot as plt

elec = Electron(n=1e11, T=1000)

l_probe = 40e-3
l_guard = 25e-3
z_probe = np.linspace(0, l_probe, 100)
z_guard = np.linspace(-l_guard, 0, 100)

geo = Cylinder(r=0.25e-3, l=l_probe, lguard=True)
i_probe = finite_length_current_density(geo, elec, V=5, z=z_probe)
i_guard = finite_length_current_density(geo, elec, V=5, z=z_guard)

plt.plot(z_probe*1e3, -i_probe*1e6)
plt.plot(z_guard*1e3, -i_guard*1e6, ':C0')
plt.xlabel('z [mm]')
plt.ylabel('i [nA/mm]')
plt.show()





[image: _images/profile2.png]
If finite values are used for lguard or rguard, the end of the guard pointing away from the probe will assume end effects similar to that of a free cylindrical end, and these end effects may extend into the probe if the guard is short. In reality a guard will often be mounted on a spacecraft or some arbitrary body, which will lead to a different end effect than that of a free end. Due to the arbitraryness of this end effect, it cannot be predicted by the finite-length model. For this reason, and because the model is believed to be more accurate for large probe plus guard lengths (see [Marholm]), it is advisable to specify ideal guards in most cases. For the same reasons, it is also advisable that instruments be designed with long guards (long probes are in fact less important, since their non-ideal effects can be predicted).



Total collected current

The second model describes the total collected current, and is merely the integral of the current per unit length. Its signature is as follows:

finite_length_current(geometry, species, V=None, eta=None, normalization=None, interpolate='I')





See example of use in Getting Started.



Behind the curtains

This section describes implementation details beyond what is mentioned in [Marholm].
The current per unit length in the finite-length model (finite_length_current_density) is given by the following expression [Marholm]:


[image: i(z) = i_\mathrm{OML}\, g(\zeta; \lambda, \eta)]


where [image: i_\mathrm{OML}] is the current per unit length according to the OML theory, and


[image: \zeta = \frac{z}{\lambda_D} ,\quad \lambda = \frac{l}{\lambda_D} ,\quad \eta = -\frac{qV}{kT}]


are the non-dimensional groups. [image: z] is the position on the probe, which spans from 0 to [image: l]. Moreover,


[image: g(\zeta) = C( 1 + h(\zeta) + h(\lambda-\zeta) ) \, \\ h(\zeta) = A( \zeta - \delta + \alpha^{-1}) \exp(-\alpha\zeta)]


where [image: A], [image: C], [image: \alpha] and [image: \delta] are coefficients that are known for fixed pairs [image: (\lambda,\eta)] on a regular grid.

For probes with guards, the total normalized length is taken to be [image: \lambda=\lambda_l+\lambda_p+\lambda_r], where [image: \lambda_l] and [image: \lambda_r] are the normalized lengths of the left and right guards, respectively, whereas [image: \lambda_p] is the normalized length of the actual probe. The end effects still have the same shape, but are (partially) absorbed by the guards. However, in Langmuir the origin is shifted, such that the zeta parameter is actually [image: \zeta_p=\zeta-\lambda_l]. With this shift, the probe strecthes from [image: \zeta_p=0] to [image: \zeta_p=\lambda_p], and the guards extend beyond this range on either side. The [image: g]-function may be re-written as a function of [image: \zeta_p]:


[image: g(\zeta_p) = C( 1 + h(\lambda_l+\zeta_p) + h(\lambda_p+\lambda_r-\zeta_p) )]


The total current collected by the probe (finite_length_current) is obtained by integrating [image: i(z)] over the probe, excluding the guards,


[image: I &= i_\mathrm{OML}\lambda_DG \\ G &= \int_0^{\lambda_p} g(\zeta_p)\,\mathrm{d}\zeta_p = C( \lambda_p + H(\lambda_p+\lambda_l) + H(\lambda_p+\lambda_r)              - H(\lambda_l)           - H(\lambda_r) ) \\ H(\zeta) &= A\frac{\alpha(\delta-\zeta)-2}{\alpha^2}\exp(-\alpha\zeta)]


The shift of origin is not only convenient, but eliminates the need to subtract [image: \lambda_l] from [image: \lambda_l+\lambda_p], which could lead to issues of numerical accuracy when [image: \lambda_l] is large, or even tends to infinity. The above expressions, on the other hand, have no such differences, and behave gracefully as the guard lengths increases to infinity.

For parameters [image: (\lambda,\eta)] not on the regular grid in parameter space, interpolation is necessary. One alternative is to linearly interpolate the coefficients [image: A], [image: C], [image: \alpha] and [image: \delta]. However, as described in [Marholm] this may not behave well for short probe plus guard lengths. For the total collected currents it is also possible to calculate [image: I] for the four nearest parameters [image: (\lambda,\eta)] on the grid, and interpolate [image: I] linearly. This gives a smoother result, since [image: I] then varies linearly with [image: (\lambda,\eta)]. This is now the default behaviour, but [image: I] may still be derived from interpolated coefficients by setting interpolate='g' in finite_length_current.





          

      

      

    

  

    
      
          
            
  
Finite radius models

Finite radius models relax the restriction on the OML theory that the radius should be small, and may be accessed through the following function:

finite_radius_current(geometry, species, V=None, eta=None, table='laframboise-darian-marholm', normalization=None)





Example of use:

from langmuir import *
import numpy as np
import matplotlib.pyplot as plt

plasma = Electron(n=1e11, T=1000)
geometry = Sphere(r=5*debye(plasma))

V = np.linspace(0, 2, 100)

I_OML = OML_current(geometry, plasma, V)
I_FR = finite_radius_current(geometry, plasma, V)

plt.plot(V, -I_OML*1e6, label='OML')
plt.plot(V, -I_FR*1e6, label='FR')
plt.xlabel('V [V]')
plt.ylabel('I [uA]')
plt.legend()
plt.show()





[image: _images/finite_radius.png]
The model is built from two sets of tabulated numerical results, which can be found in [Laframboise] and [Darian]. The former is more accurate but covers only Maxwellian plasmas, whereas the latter covers the more general Kappa-Cairns distributions. By default interpolation between tabulated values will use the most accurate values. The model is valid for [image: 0\leq\eta\leq 25], [image: \kappa\geq 4] and [image: \alpha\leq 0.2]. Probe radii extends up to 10 Debye lengths, or even 100 Debye lengths as the distribution approaches Maxwellian.




          

      

      

    

  

    
      
          
            
  
Examples


Contents:


	Numerically solving for the floating potential

	Fitting beta for a finite-length probe

	Interactive finite-length current profile

	Inferring plasma parameters from measurements
	A general formulation

	Synthetic data

	Inversion by least-squares curve fitting

	Inversion by machine learning












          

      

      

    

  

    
      
          
            
  
Numerically solving for the floating potential

In this example we consider how to numerically obtain the floating potential by means of a root solver. We shall consider a sphere situated in a hydrogen plasma, which is known to have a floating potential of [image: -2.5kT/e], where [image: k] is Boltzmann’s constant, [image: T] is the temperature, and [image: e] is the elementary charge [Whipple]. The code for the example is given below:

from langmuir import *
from scipy.constants import value as constants
from scipy.optimize import root_scalar

n=1e11
T=1000
e = constants('elementary charge')
k = constants('Boltzmann constant')

plasma = [Electron(n=n, T=T),
          Hydrogen(n=n, T=T)]

geometry = Sphere(r=0.2*debye(plasma))

def res(V):
    return OML_current(geometry, plasma, V)

sol = root_scalar(res, x0=-3, x1=0)

print(sol.root)
print(-2.5*k*T/e)





The requirement for a steady floating potential is that the net current into the object, by all species, is zero. Otherwise the potential would increase or decrease. Thus, in our case we seek to find the root of the characteristic, which we take as OML_current in the example above. The function root_scalar from SciPy iterates on the value V of res within the range [image: (-3,0)], until it returns a value that is sufficiently close to zero, i.e., the root of OML_current. The script returns:

-0.2157892685234552
-0.21543333155362945





and hence is in excellent agreement with previous results.




          

      

      

    

  

    
      
          
            
  
Fitting beta for a finite-length probe

For large voltages, [image: \eta=qV/kT\gg 1], the normalized current collected from the attracted species according to the OML theory may be written as power law:


[image: \frac{I}{I_\mathrm{th}} \approx c\eta^\beta]


where [image: \beta] is 0, 0.5 or 1 for a plane, cylinder or sphere, respectively. It is customary to use this same expression for probes of finite length as well, but with [image: \beta] varying between 0.5 and 1. This example demonstrates how to use a standard curve fitting algorithm to find [image: \beta] for a cylindrical probe of ten Debye lengths:

from langmuir import *
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit

elec = Electron()
eta = np.linspace(10,100,100)
geo = Cylinder(r=0.1*elec.debye, l=10*elec.debye)
I = finite_length_current(geo, elec, eta=eta, normalization='th')

def power_law(eta, c, beta):
    return c*eta**beta

popt, pcov = curve_fit(power_law, eta, I)

plt.plot(eta, I, label='Finite-length model')
plt.plot(eta, power_law(eta, *popt), ':k',
         label=r'Power law ($c={:.2f}, \beta={:.2f})$'.format(*popt))

plt.xlabel(r'$\eta$')
plt.ylabel(r'$I/I_\mathrm{th}$')
plt.legend()
plt.show()





[image: _images/beta.png]
In the code we start by evaluating the charactersitic at 100 points along [image: \eta\in[10,100)]. Note that we keep the normalized voltage always above 10 such that the large voltage approximation is satisfied. We then define the function we want to fit the characteristic to, power_law, with the input as the first argument, followed by an arbitrary number of fitting coefficients (in our case two). The SciPy function curve_fit makes a best fit of these coefficients, returned in the tuple popt. With these coefficients, the fit (dotted line) is in excellent agreement with the actual characteristic (solid line), and [image: \beta=0.72].




          

      

      

    

  

    
      
          
            
  
Interactive finite-length current profile

In this example the current per unit length is plotted along a cylindrical
probe, allowing the user to interactively change then length and voltage of the
probe. All quantities are normalized.

import matplotlib
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
from langmuir import *
from scipy.special import erf

normalization='OML'

elec = Electron()
geo = Cylinder(r=0.1*elec.debye, l=20*elec.debye)
z = np.linspace(0, 20, 1000)
I = finite_length_current_density(geo, elec, zeta=z, eta=25, normalization=normalization)

len_min = 1
len_max = 40
eta_min = -10
eta_max = 100

fig, ax = plt.subplots()
plt.subplots_adjust(bottom=0.25)
line, = plt.plot(z, I)
if normalization=='th':
    ax.axis([-5, len_max+5, 0.5, 20])
else:
    ax.axis([-5, len_max+5, 0.5, 4.5])
ax.grid()
plt.xlabel(r'$z/\lambda_D$')
plt.ylabel(r'$I/I_\mathrm{OML}$')

ax_len = plt.axes([0.1, 0.10, 0.8, 0.03])
ax_eta = plt.axes([0.1, 0.05, 0.8, 0.03])
sl_len = Slider(ax_len, r'$l/\lambda_D$', 1, len_max, valinit=20)
sl_eta = Slider(ax_eta, r'$\eta$', eta_min, eta_max, valinit=25)

def update(val):
    eta = sl_eta.val
    l = sl_len.val
    z = np.linspace(0, l, 1000)
    geo = Cylinder(r=0.1*elec.debye, l=l*elec.debye)
    I = finite_length_current_density(geo, elec, zeta=z, eta=eta, normalization=normalization)
    line.set_ydata(I)
    line.set_xdata(z)

sl_len.on_changed(update)
sl_eta.on_changed(update)

plt.show()








          

      

      

    

  

    
      
          
            
  
Inferring plasma parameters from measurements

The purpose of Langmuir probes is to measure plasma parameters, such as the electron and ion densities, and the electron temperature. The traditional techniques rely on OML theory, which predicts that the characteristic behaves differently in different regions of the probe voltage. For voltages between the floating potential and the background plasma potential (here taken to be zero), for instance, the ion current can be neglected and the OML theory then predicts a slope [image: \mathrm{d}(\ln I) /\mathrm{d}V] depending only on the electron temperature, as well as some physical constants. Doing a voltage sweep across this region therefore allows the determination of the electron temperature. Further on, in the electron (ion) saturation region, the ions (electrons) can be neglected, and the analytical expressions of the remaining part allows determination of the electron (ion) density, once the electron temperature is known [Marholm2], [Bekkeng], [MottSmith], [Bittencourt].

[image: _images/OML_regions.png]
Another technique is that of Jacobsen and Bekkeng for the multineedle Langmuir probe (m-NLP) instrument [Jacobsen]. The m-NLP instrument consists of at least two (typically four) cylindrical Langmuir probes biased at different fixed positive voltages with respect to a spacecraft. The OML theory predicts that the slope [image: \mathrm{d}I^2/\mathrm{d}V] depends only on the electron density, except for known physical constants. The m-NLP instrument thus allows inferring the electron density without sweeping the voltage, which gives the m-NLP  instrument faster sampling times and thus higher spatial resolution while spaceborn than swept Langmuir probes. A fast implementation of this density inference technique is readily available in Langmuir. Given an [image: N\times 4] array I, where each row corresponds to the currents measured at some time instant by probes biased at, say, 2, 3, 4, and 5 volts with respect to some common reference voltage, the densities can be inferred as follows:

n = jacobsen_density(Cylinder(r=0.255e-3, l=25e-3), [2,3,4,5], I)





The main problem with these approaches is that they rely upon specific analytic expressions for the characteristic, which may not hold for non-ideal cases (finite length, finite radius, collisional or non-Maxwellian plasmas). Another problem is in identifying the different regions. In spaceborn Langmuir probes, for instance, the probe voltage is only known with respect to the spacecraft, and not with respect to the background plasma.


A general formulation

In relation to the Langmuir software we take a more general point of view [Marholm2]. Consider that a set of currents [image: \{\hat I_p\}_{p=1}^N] have been measured in a plasma. The currents may for instance be the currents corresponding to different voltages of a swept Langmuir probe, or it may be the currents collected by different probes, such as in the m-NLP instrument. For the sake of generality, we allow each measurement to obey a different characteristic function, which we denote [image: I_p(V_p; \mathbf P)]. [image: V_p] is the probe voltage at which the current was measured, and [image: \mathbf P] is a vector of other parameters that the characteristics depend upon, such as electron temperature and density. The probe voltage is often not known with respect to the background plasma, but instead with respect to a common reference voltage [image: V_0]. For spaceborn instruments this is the spacecraft floating potential. With this, we may write [image: V_p=V_0+V_{0p}], and the measurements form the following system of equations:


[image: \hat I_p = I_p (V_0 + V_{0p}; \mathbf P),\quad p=1,...,N]


This set of equations may be solved for the unknowns [image: (V_0,\mathbf P)] by any suitable numerical method (insofar as it is well-posed), and there is a wide range of free software available depending on how this system is to be solved. However, it requires programmatic access to the characteristics [image: I_p(V_p; \mathbf P)]. Computing the currents for given physical parameters may be considered the forward problem, and it is a prerequisite for solving the inverse problem, namely inferring physical parameters from measured currents. Langmuir focuses on the forward problem. In the following, however, we give a few examples of attacking the inverse problem.



Synthetic data

For experimentation, the following function can be used to generate a test set of synthetic currents:

generate_synthetic_data(geometry,
                        V,
                        model=finite_length_current,
                        V0=None,
                        alt_range=(100,500),
                        noise=1e-5)





The currents are synthesized assuming densities from IRI [IRI] and temperatures from MSIS [MSIS] for 45 degrees latitude, 0 degrees longitude, and altitudes within the range given by alt_range at local noon. The advantage of synthetic data is that since the ground truth is known, it can be used to measure the accuracy of the inversion. Beware, however, that generate_synthetic_data necessarily must use some model to generate the currents (given by model), and the net accuracy of the final inferred parameters will depend both on the accuracy of the inversion and of the forward model for the problem at hand.

generate_synthetic_data will also add noise proportional to the square root of the signal strength and the factor noise for a representative signal-to-noise ratio [Ikezi], as well as generate a synthetic floating potential. Alternatively the floating potential can be preset by the argument V0. For a given geometry and array of bias voltages V, the function returns a dictionary with the following arrays:


	alt: Altitude of the data samples [km]


	I: Synthetic current measurements [A], one column for each bias voltage


	V0: Ground truth, floating potential [V]


	Te: Ground truth, electron temperature [K]


	Ti: Ground truth, ion temperature [K]


	ne: Ground truth, electron density [1/m^3]


	nO+: Ground truth, density of oxygen ions [1/m^3]


	nO2+: Ground truth, density of doubly charged oxygen ions [1/m^3]


	nNO+: Ground truth, density of nitrosonium ions [1/m^3]


	nH+: Ground truth, density of hydrogen ions [1/m^3]






Inversion by least-squares curve fitting

In this section we consider how to infer electron density and floating potential from current measurements by an iterative non-linear least squares curve fitting algorithm. Least-squares fitting works by minimizing a sum of squared residuals [image: r_p],


[image: R=\sum_p r_p^2]


with respect to the fitting coefficients which in our case is [image: (n_e, V_0)]. The residuals, we take as


[image: r_p = (I_p (V_0 + V_{0p}; \mathbf P) - \hat I_p)]


such that a perfect solution yields [image: R=0].

We shall assume a 4-NLP instrument with bias voltages [image: V_{0p}] of 2, 3, 4 and 5 volts with respect to the unknown floating potential [image: V_0]. There will then be four residuals per time sample, and in order to use SciPy’s least_squares function we need to define a function residual returning a vector of these four residuals when given an approximation of the coefficients [image: x=(n_e, V_0)] as its first argument.

To begin with, it is advisibale to verify the method on a simpler case. We therefore assume that OML theory is a perfect representation of reality, and use it to generate synthetic ground truth data along with generate_synthetic_data. We then do the least-squares fit of the synthesized currents to the OML characteristic ([image: I_p] is given by OML_current), and verify that we are able to make predictions close to the ground truth. The code reads as follows:

from langmuir import *
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import least_squares
from tqdm import tqdm

geometry = Cylinder(r=0.255e-3, l=25e-3, lguard=True)
V = np.array([2,3,4,5])

model_truth = OML_current
model_pred = OML_current

data = generate_synthetic_data(geometry, V, model=model_truth)

alt = data['alt']
ne_jacobsen = jacobsen_density(geometry, V, data['I'])
ne_fit = np.zeros_like(alt)
V0_fit = np.zeros_like(alt)

def residual(x, I, T):
    n, V0 = x
    return (model_pred(geometry, Electron(n=n, T=T), V+V0) - I)*1e6

x0 = [10e10, -0.3]
x_scale = [1e10, 1]
for i in tqdm(range(len(alt))):
    I = data['I'][i]
    T = data['Te'][i]
    T = 2000
    res = least_squares(residual, x0, args=(I,T), x_scale=x_scale)
    ne_fit[i], V0_fit[i] = res.x
    x0 = res.x

plot = plt.plot

plt.figure()
plot(data['ne'], alt, label='Ground truth')
plot(ne_jacobsen, alt, label='Jacobsen')
plot(ne_fit, alt, label='Fit')
plt.xlabel('Density $[\mathrm{m}^{-3}]$')
plt.ylabel('Altitude $[\mathrm{km}]$')
plt.legend()

plt.figure()
plot(data['V0'], alt, label='Ground truth')
plot(V0_fit, alt, label='Fit')
plt.xlabel('Floating potential $[\mathrm{V}]$')
plt.ylabel('Altitude $[\mathrm{km}]$')
plt.legend()

plt.show()





The loop carries out the fit over each sample, and to increase our chance of success and possibly reduce the number of iterations required, we try to give it an initial guess x0 that is as close as possible to the true value as possible. For the first sample this is a pre-set value, and for subsequent samples we use the previous solution.

Because numerical algorithms often work best for numbers close to unity, we also scale the coefficients [image: (n_e, V_0)]. This is conveniently handled by least_squares itself, which accepts an argument x_scale with numbers of typical magnitude. The residuals are in the order of microampére’s and also needs to be scaled. However, although least_squares has an argument f_scale for the residuals, it is not always in use. We therefore multiply the residuals by 1e6 ourselves.

The residual function may also accept arguments that are not part of the optimization, in our case the four currents stored in the vector I and the electron temperature T. These are passed through to residual using the args argument of least_squares. Although the electron temperature is technically an unknown parameter (an input to the forward model), it is hard to infer it because the characteristic only depends very weakly on it (see [Hoang], [Barjatya], [Marholm2]). We therefore specify it manually. This could just be a representative number (2000K in our case), or it could be a number from another instrument or model. For our example with synthetic data it is also possible to use the ground truth directly, by replacing the line T = 2000 with T = data['Te'][i]. Execution results in the following plots:

[image: _images/ne_OML.png]
[image: _images/V0_OML.png]
The density agrees well with both the ground truth, as well as densities inferred with the Jacobsen-Bekkeng method. Close inspection, however, reveals a small discrepancy between our method and the Jacobsen-Bekkeng method. This is due to the fact that the system is overdetermined (inferring 2 parameters from 4 measurements), and the Jacobsen-Bekkeng method minimizes a squared residual in [image: \mathrm{d}I^2/\mathrm{d}V], whereas our method minimizes a squared residual in [image: I] itself. Removing two of the bias voltages lead to perfect agreement. The method captures a trend in the floating potential but cannot make accurate predictions of it.

Now that the technique is established, we can proceed by assuming that the finite-length model is a perfect representation of reality, and fitting the currents to the finite-length characteristic. This is simply a matter of substituting the following lines:

model_truth = finite_length_current
model_pred = finite_length_current





During data synthesis we will receive warnings about the normalized voltage [image: eV/kT] exceeding the maximum of 100 in the finite-length model. This happens for the lower altitudes, when the temperature [image: T] is low. It will not prevent execution, however, but it is important to be aware of, since it means the model must extrapolate, which is less accurate than interpolation. The resulting inference is plotted as before:

[image: _images/ne_FL.png]
[image: _images/V0_FL.png]
As is to be expected, the inferred density is close to the ground truth. For finite-length effects, the inferred density is not entirely independent of the specified temperature T, and this causes some error. The dependence is weak enough, however, that the error is not severe. The accuracy is also degraded for lower altitudes due to the aforementioned extrapolation. The floating potential is not very accurate, but then again, this cannot be expected when it was not accurate for the simpler case. Finally, it is interesting to compare with the Jacobsen-Bekkeng method, since this is indicative of the error caused by neglecting end effects.



Inversion by machine learning

Another way to solve the inverse problem is by machine learning, or more
specifically, by regression. This was first described in [Chalaturnyk] and
[Guthrie], and we shall carry out a similar (though not entirely identical)
procedure here. We consider a plasma parameter (here: the electron density
[image: n_e]) to be approximated by some function [image: f] of measured
currents:


[image: n_e = f(\hat I_1, \hat I_2, ..., \hat I_N)]


The function represents, in our case, a machine learning network, and has a
number of coefficients that will be determined by fitting (training) it to
synthetic data with known densities [image: n_e]. Once the network is trained,
it can be used to predict densities [image: \hat n_e] from actual measurements.
The procedure can be split in three parts, as seen in the example code:

#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
import langmuir as l
from tqdm import tqdm
from itertools import count
from localreg import RBFnet, plot_corr
from localreg.metrics import rms_rel_error

geo = l.Cylinder(r=0.255e-3, l=25e-3, lguard=float('inf'))
model = l.finite_length_current
Vs = np.array([2, 3, 4, 5]) # bias voltages

"""
PART 1: GENERATE SYNTHETIC DATA USING LANGMUIR
"""

def rand_uniform(N, range):
    """Generate N uniformly distributed numbers in range"""
    return range[0]+(range[1]-range[0])*np.random.rand(N)

def rand_log(N, range):
    """Generate N logarithmically distributed numbers in range"""
    x = rand_uniform(N, np.log(range))
    return np.exp(x)

N = 1000
ns  = rand_log(N, [1e11, 12e11])  # densities
Ts = rand_uniform(N, [800, 2500]) # temperatures
V0s = rand_uniform(N, [-3,  0])   # floating potentials

# Generate probe currents corresponding to plasma parameters
Is = np.zeros((N,len(Vs)))
for i, n, T, V0 in zip(count(), ns, Ts, tqdm(V0s)):
    Is[i] = model(geo, l.Electron(n=n, T=T), V=V0+Vs)

"""
PART 2: TRAIN AND TEST THE REGRESSION NETWORK
"""

# Use M first data points for training, the rest for testing.
M = int(0.8*N)

# Train by minimizing relative error in density
net = RBFnet()
net.train(Is[:M], ns[:M], num=20, relative=True, measure=rms_rel_error)

# Plot and print error metrics on test data
pred = net.predict(Is[M:])

fig, ax = plt.subplots()
plot_corr(ax, ns[M:], pred, log=True)
print("RMS of relative density error: {:.1f}%".format(100*rms_rel_error(ns[M:], pred)))

"""
PART 3: PREDICT PLASMA PARAMETERS FROM ACTUAL DATA
"""

data = l.generate_synthetic_data(geo, Vs, model=model)
pred = net.predict(data['I'])

plt.figure()
plt.plot(data['ne'], data['alt'], label='Ground truth')
plt.plot(pred, data['alt'], label='Predicted')
plt.xlabel('Density $[\mathrm{m}^{-3}]$')
plt.ylabel('Altitude $[\mathrm{km}]$')
plt.legend()

plt.show()





First, [image: N] synthetic data points are generated by randomly selecting
densities ([image: n] s), temperatures ([image: T] s) and floating potentials
([image: V_0] s) from appropriate ranges, and computing corresponding currents
using Langmuir. Beware that if the ranges do not properly cover the values
expected in the actual data, the network may have to extrapolate, which usually
result in inaccurate predictions.

Second, we train a regression network. We use a radial basis function (RBF)
network from the localreg [https://github.com/sigvaldm/localreg] library for closer proximity to the above-mentioned
research, although one could also use TensorFlow or other alternatives.
Remember, however, that from a machine learning point-of-view, this is a small
problem that is not well served by deep neural networks with many degrees of
freedom. Regardless of choice, it is important to test the network’s
performance (quantitatively!) on data which was not used in training. We use
80% of the synthetic data for training, and set aside the remaining part for
testing. The testing reveal that the root mean square (RMS) of the relative
density error is about 3–4% (depending on the seed of the random number
generator). The correlation plot also show good agreement between prediction
and ground truth:

[image: _images/corr_ML.png]
Third and finally, once the network has been tested, it can be used to make
predictions on real data (or in our case data generated with
generate_synthetic_data()):

[image: _images/ne_ML.png]
For real applications it is advisable to do the last step in a separate file,
using a pre-trained network that is stored as a file for reuse.

When a parameter (e.g., the density) may span multiple orders of magnitudes,
often only the most significant figures are of interest. [image: 1.00\cdot 10^{12}\,\mathrm{m^{-3}}] and [image: 0.99\cdot 10^{12}\,\mathrm{m^{-3}}] are in
practice indistinguishable, whereas there’s a huge difference between
[image: 1\cdot 10^{10}\,\mathrm{m^{-3}}] and [image: 2\cdot 10^{10}\,\mathrm{m^{-3}}], although the difference between the two pairs of
numbers are the same. In such cases it makes sense to minimize the relative error


[image: \frac{\hat n_e-n_e}{n_e},]


rather than the absolute error [image: \hat n_e-n_e]. Although the range of
densities in our example is not that large, we choose to train the network
using relative errors. We also distribute the training densities
logarithmically, since otherwise, few data points would have low orders of
magnitude, which would lead to an under-prioritization of the accuracy of of
these lower density magnitudes.





          

      

      

    

  

    
      
          
            
  
Citing Langmuir

If you use Langmuir for your research, please cite the version of Langmuir you used to produce your results. Langmuir is permanently archived with its own Digital Object Identifier (DOI) at Zenodo [https://zenodo.org/badge/latestdoi/149759145].

Furthermore, you should cite the works behind each model you use:


	For OML theory cite [MottSmith] for Maxwellian plasmas, or if you use Kappa-Cairns distributed plasmas, [Darian].


	For finite-radius models cite [Laframboise] for Maxwellian plasmas, or if you use Kappa-Cairns distributed plasmas, [Darian].


	For finite-length models cite [Marholm].







          

      

      

    

  

    
      
          
            
  
Bibliography


	Marholm

	
	Marholm and R. Marchand, Finite-length effects on cylindrical Langmuir probes, Physical Review Research, 2, 2020.






	Marholm2

	
	Marholm, The Unstructured Particle-In-Cell Method with Applications to Objects in Ionospheric Plasmas, PhD dissertation, University of Oslo, 2020.






	Darian

	
	Darian, S. Marholm, M. Mortensen and W.J. Miloch, Theory and simulations of spherical and cylindrical Langmuir probes in non-Maxwellian plasmas, Plasma Physics and Controlled Fusion, 61, 8, 2019.






	Laframboise

	
	Laframboise, Theory of spherical and cylindrical Langmuir probes in a collisionless maxwellian plasma at rest, PhD dissertation, University of Toronto, 1966.






	MottSmith

	H.M. Mott-Smith, I. Langmuir, The theory of collectors in gaseous discharges, Physical Review, 28, 1926.



	Whipple

	E.C. Whipple, Potentials of surfaces in space, Reports on Progress in Physics, 44, 1981.



	Bekkeng

	T.A. Bekkeng, Development of a miniaturized multi-Needle Langmuir Probe system for in-situ measurements of electron density and spacecraft floating potential, PhD dissertation, University of Oslo, 2017.



	Bittencourt

	J.A. Bittencourt, Funamentals of Plasma Physics, Third edition, Springer, 2004.



	Ikezi

	Ikezi et al., Probe Noise in Quiescent Plasmas, Journal of the Physical Society of Japan, 25, 6, 1968.



	Jacobsen

	K.S.Jacobsen et al., A new Langmuir probe concept for rapid sampling of space plasma electron density, Measurement Science and Technology, 21, 2010.



	Hoang

	
	Hoang et al., A study of data analysis techniques for the multi-needle Langmuir probe, Measurement Science and Technology, 29, 2019.






	Barjatya

	
	Barjatya et al., Invited article: Data analysis of the floating potential measurement unit abourd the international space station, Review of Scientific Instruments, 80, 4, 2009.






	IRI

	The IRI Ionospheric Model.



	MSISE

	The MSISE Ionospheric Model.



	Chalaturnyk

	
	Chalaturnyk and R. Marchand, A First Assessment of a Regression-Based Interpretation of Langmuir Probe Measurements, Frontiers in Physics, 7, 2019.






	Guthrie

	
	Guthrie, R. Marchand and S. Marholm, Inference of plasma parameters from fixed-bias multi-needle Langmuir probes (m-NLP), Measurement Science and Technology, 32, 2021.











          

      

      

    

  

    
      
          
            

   Python Module Index


   
   l
   


   
     		 	

     		
       l	

     
       	[image: -]
       	
       langmuir	
       

     
       	
       	   
       langmuir.analytical	
       

   



          

      

      

    

  

    
      
          
            

Index



 J
 | L
 | N
 | O
 | T
 


J


  	
      	jacobsen_density() (in module langmuir.analytical)


  





L


  	
      	langmuir (module)


  

  	
      	langmuir.analytical (module)


  





N


  	
      	normalization_current() (in module langmuir.analytical)


  





O


  	
      	OML_current() (in module langmuir.analytical)


  





T


  	
      	thermal_current() (in module langmuir.analytical)


  







          

      

      

    

  

    
      
          
            
  
Inverse problems

Sometimes the collected current of one or more probes is known and one would like to solve for one or more other parameters. The Langmuir library do not address this analytically in part due to the vast number of such inverse problems, and in part due to some characteristics not being invertible (for instance those who are of tabulated values). However, it is in principle possible to apply numerical methods of root solving, least squares, etc. along with the models in Langmuir.

Consider a cylindrical probe with known dimensions and a positive but unknown voltage collecting a current of -0.4uA in a Maxwellian plasma with known density and temperature. What is the voltage? We shall neglect the current due to ions, and define a residual function. This residual is the difference between the current collected by a probe at a given potential, and the actual collected current, and it is used by a least squares algorithm to compute the voltage:

>>> from langmuir import *
>>> from scipy.optimize import leastsq

>>> sp = Species(n=1e11, T=1000)
>>> geo = Cylinder(1e-3, 25e-3)
>>> I = -0.4e-6

>>> def residual(V):
>>>     return finite_radius_current(geo, sp, V) - I

>>> x, c = leastsq(residual, 0)
>>> print(x[0])
0.6265540484991013





The reader may verify that this voltage indeed results in the correct current. Notice also that we were in fact able to invert the model finite_radius_current, which consists of tabulated values.

A slightly more interesting inversion problem, is that of determining the ionospheric density from four cylindrical Langmuir probes with known bias voltages with respect to a spacecraft, but an unknown floating potential V0 of the spacecraft with respect to the plasma. We shall assume the bias voltages to be 2.5, 4.0, 5.5 and 7.0 volts. In the below example, we first construct the currents for such probes by assuming a floating potential and a set of plasma parameters, but we do not use this knowledge in the inversion. We do, however, make an initial guess x0 which we believe are somewhat close to the answer:

>>> from langmuir import *
>>> from scipy.optimize import leastsq

>>> geo = Cylinder(1e-3, 25e-3)
>>> V0 = -0.5
>>> V = np.array([2.5, 4.0, 5.5, 7.0])
>>> I = OML_current(geo, Species(n=120e10, T=1000), V+V0)

>>> def residual(x):
>>>     n, V0 = x
>>>     return OML_current(geo, Species(n=n, T=1500), V+V0) - I

>>> x0 = [10e10, -0.3]
>>> x, c = leastsq(residual, x0)
>>> n, V0 = x

>>> print(n)
1199899818493.931

>>> print(V0)
-0.5417515655165968





The method correctly determined the density to be 120e10. However, the floating potential V0 is off by almost ten percent. The reason is that the temperature is considered unknown, and assumed to be 1500K when solving the problem, while it is actually 1000K. Since we have four measurements (four equations) and only two unknowns, it is tempting to also include the temperature as an unknown parameter and try to solve for it. However, if this is done the least squares algorithm will fail miserably. The reason is that the set of equations arising for the attracted-species current of cylindrical probes are singular and cannot be solved for even analytically. Fortunately, both the temperature and floating potential can be eliminated from the equation when analytically solving for the density, and similarly it also works to obtain the density from the least squares algorithm. Since the floating potential and temperature represent a coupled unknown which cannot be solved for, an error in assuming one is reflected as an error in the other.

This demonstrates the usefulness as well as challenges and subtleties of solving inverse Langmuir problems.




          

      

      

    

  

    
      
          
            
  
Programmer’s Reference


	Copyright 2018

	Sigvald Marholm <marholm@marebakken.com>
Diako Darian <diako.darian@gmail.com>





This file is part of langmuir.

langmuir is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

langmuir is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with langmuir.  If not, see <http://www.gnu.org/licenses/>.


	
langmuir.analytical.OML_current(geometry, species, V=None, eta=None, normalization=None)

	Current collected by a probe according to the Orbital Motion Limited (OML)
theory. The model assumes a probe of infinitely small radius compared to
the Debye length, and for a cylindrical probe, that it is infinitely long.
Probes with radii up to 0.2 Debye lengths (for spherical probes) or 1.0
Debye lengths (for cylindrical probes) are very well approximated by this
theory, although the literature is diverse as to how long cylindrical probes
must be for this theory to be a good approximation.


	geometry: Plane, Cylinder or Sphere

	Probe geometry



	species: Species or array-like of Species

	Species constituting the background plasma



	V: float or array-like of floats

	Probe voltage(s) in [V]. Overrides eta.



	eta: float or array-like of floats

	Probe voltage(s) normalized by k*T/q, where q and T are the species’
charge and temperature and k is Boltzmann’s constant.



	normalization: ‘th’, ‘thmax’, None

	Wether to normalize the output current by, respectively, the thermal
current, the Maxwellian thermal current, or not at all, i.e., current
in [A/m].





float if voltage is float. array of floats corresponding to voltage if
voltage is array-like.






	
langmuir.analytical.jacobsen_density(geometry, biases, currents, species=Species(q=-1.602176634e-19, m=9.1093837015e-31, n=100000000000.0, T=1000))

	Density computed according to the slope in current squared versus voltage
(the Jacobsen-Bekkeng method). This assumes that OML theory for a
cylindrical probe is exact.


	geometry: Cylinder

	Probe geometry



	biases: array-like of floats

	Probe bias voltages [V] with respect to some common reference



	currents: 2D array-like of floats

	Current measurements. currents[i,j] is sample i, probe current j



	species: Species

	The attracted species. The density and temperature in the species
object is disregarded by this function.





Array of computed densities, one element for each row in currents.






	
langmuir.analytical.normalization_current(geometry, species)

	Returns the normalization current for the given species and geometry.
The normalization current is the current the species would have contributed
to a probe at zero potential with respect to the background plasma due to
random thermal movements of particles, if the species had been Maxwellian.


	geometry: Plane, Cylinder or Sphere

	Probe geometry



	species: Species or array-like of Species

	Species constituting the background plasma





float






	
langmuir.analytical.thermal_current(geometry, species, normalization=None)

	Returns the thermal current.


	geometry: Plane, Cylinder or Sphere

	Probe geometry



	species: Species or array-like of Species

	Species constituting the background plasma





float








          

      

      

    

  _images/math/a702e781dfc76762a3a132c2031fba8898430925.png





_images/math/a78d8c12b003f642651cfe9a4765dda01913d5cf.png





_images/math/a50328bb1093d77172ac5dfd39914d90e2065d1f.png





_images/math/a60df395127d8233f2bf6eb44a71aa558a20c1bd.png
—2.0kT [e





_images/math/a91fac3109352e970dffe6ad409c414b34069c4e.png





_images/math/aba00e38859d806a0f1fe7a2415d3b6d48f4617b.png





_images/math/9cecb1f43c3e15c5ad3f3afe7d5f419f712e6a4f.png
(120, Vi)





_images/math/a07288d8517dc7ba35f46f3ace83d1268b0a9fc5.png
3 =0.72





_images/math/9871b7a91d1412b71125c7bf8eec4b5cd9b3e854.png





_images/math/99be7e31acdc7eb84249c34ec89da26d070bb345.png





nav.xhtml

    
      Table of Contents


      
        		
          Langmuir’s documentation!
        


        		
          Installation
        


        		
          Getting Started
        


        		
          Specifying the plasma
          
            		
              Quick computations of plasma parameters
            


          


        


        		
          Specifying the geometry
        


        		
          Characteristic models
          
            		
              Analytical theories
              
                		
                  The orbital motion-limited (OML) theory
                


                		
                  Thermal currents and the sheath-limited (SL) theory
                


              


            


            		
              Normalization
            


            		
              Finite length models
              
                		
                  Current per unit length
                


                		
                  Total collected current
                


                		
                  Behind the curtains
                


              


            


            		
              Finite radius models
            


          


        


        		
          Examples
          
            		
              Numerically solving for the floating potential
            


            		
              Fitting beta for a finite-length probe
            


            		
              Interactive finite-length current profile
            


            		
              Inferring plasma parameters from measurements
              
                		
                  A general formulation
                


                		
                  Synthetic data
                


                		
                  Inversion by least-squares curve fitting
                


                		
                  Inversion by machine learning
                


              


            


          


        


        		
          Citing Langmuir
        


        		
          Bibliography
        


      


    
  

_images/V0_OML.png
Altitude [km]

500

450

400

350

300

250

200

150

100

—— Ground truth
— Fit

-1.0

-0.8

0.6

04 -02 00
Floating potential [V]

02 04

0.6





_images/basic.png
1 [uA]

2.5

2.0

15

10

05

0.0

— oML
— R

-15

-1.0

05

0.0

M

05

10

15

2.0






_images/OML_regions.png
uorjeanjyes

uo1309[H
uorjepIEIel Q
N\
uoI309[H
[y \
+ \
| 1
RSN ¢
uoryeIN)es H|H
_ :
| uoy I
1
T T T T T T T
o v 9o 1 o W o 1 9O
S KN n a4 & r~ m & 3
~ — — — — o o o (=)

[>'w] quoriny





_images/V0_FL.png
Altitude [km]

500

450

400

350

300

250

200

150

100

—— Ground truth
— Fit

-1.0

0.0 05 10
Floating potential [V]

15 2.0






_images/finite_radius.png
— oML
— R

250

200

vnlt

100

50

025 050 075 100 125 150 175 2.00
vivl

0.00





_static/minus.png





_images/ne_FL.png
Altitude [km]

500

450

400

350

300

250

200

150

100

—— Ground truth
—— Jacobsen
— At

Density [m~3]

lell






_static/file.png





_images/beta.png
i

30

25

20

15

10

— Finite-length model
- Power law (c=1.10,8=0.72)

20 40

60

80

100






_images/corr_ML.png
Predicted

102

1011

True

1012






_static/plus.png





_static/up.png





_static/up-pressed.png





_images/ne_ML.png
Altitude [km]

500

450

400

350

300

250

200

150

100

—— Ground truth
—— Predicted

05

10

15

2.0

Density [m~3]

2.5 3.0
lell





_static/down.png





_static/down-pressed.png





_images/ne_OML.png
Altitude [km]

500

450

400

350

300

250

200

150

100

—— Ground truth
—— Jacobsen
— At

05

10

15

2.0

Density [m~3]

2.5 3.0
lell






_images/profile.png
38

36

[wwivul 1

30

28

26

15 20 25 30 35 40
z[mm]

10





_images/math/021380689fc5f81a36c57bdf3579529b4d5fc1f5.png





_images/math/026e5d4f663d8bd19eb67baafbb9ec65634f6170.png
Al + Ay





_images/profile2.png
35

30

[wwpyu]

20

15

-10 10 20 30 40
z[mm]

-20





_images/math/0043fe6507e9b1d112e07a2801e24927e267dd50.png





_images/math/06d9a45ca039fa2db1c901a6753bb4e8b19c9a27.png





_images/math/0b7c1e16a3a8a849bb8ffdcdbf86f65fd1f30438.png





_images/math/035ba4f71d8916ab9114e943aa6ec7d2ad3a2516.png
aj/r





_images/math/0479746394fe7b28eb8b67dd4d06ecc3078df4b9.png
I =10mLADG

G:/A’.q(kp)dkp:C(/\?+H(/\?+/\1)+H(/\?+/\T)7H(/\l)’H(/\'r))
o

Q) =292 a0





_images/math/0e157574dc52c16b7aad0f260830b27b523706f4.png





_images/math/103784bb1c25c7d683cd06e1159223856b5fcb41.png
n =0





_images/math/0d6daf647888e8e8b3d6bcc5d5fa055010930694.png





_images/math/1775d70ece5680415046ae3a29c2ccc2842447ca.png





_images/math/1e893a55cb3036418e9ddfcfcdfcf28cc37a0704.png
glip) = C(1+ (N + () +h(A + A — ()





_images/math/109ceb501c116cda2389b861f813999230d62acb.png
{I}Y,





_images/math/10c0fe23c0d420994ab7d5f09716a80f2504414c.png
n € [10,100)





_images/math/2a316a8e78d93db9ef7297324b9b2ec98c2a8ca3.png





_images/math/2878961a64f4d64678dae8bf692b52f07c85ae70.png





_images/math/29740a4b73a6eaa6870089eabc894340010bba0d.png





_images/math/340c8eaeb31acbd67c984d9fa679b2c42cfa3f9b.png





_images/math/410a9d0df9c135dd73b269cba7ef04dcfd932b1f.png





_images/math/307b3725cbb03398131f9ca542d79aff4933195f.png





_images/math/3238068bae8fabaa8c85a897b3d76e833853c5d4.png





_images/math/52d50951a14a7f921fec1260b935ce69449f1f61.png
n<~u





_images/math/532f3248d6552e7ac6b785bd935f404ad593e6a9.png





_images/math/474dbb9b04c8bdaaef44cf7c3cc030caea37b939.png





_images/math/493e3b4c79402433c6895e3e0e60a80fe45846a3.png





_images/math/53992520145903a4115bfdc4c5f5b08cc2fe115f.png
Vo

Vo + Vop





_images/math/c448813deb47c22dedcb5b565c75fa6bcdc9c04b.png





_images/math/566659ad5b376127ef4ecd5aa4e2d444b435d670.png
0.99 - 10 m—°





_images/math/cab26b455c541a5b524c2b798caa76a45679f0cf.png





_images/math/c47a71e0d1315ab6739ee2729d4ead0cb11f4ecf.png
LOML





_images/math/cc4566dc9c3255c53535731df06b1da323f3184a.png
|~
2

=
=






_images/math/cb5a5c4f27a3b80b1e1eac8b385696e514062df7.png





_images/math/b7793e4f08d00aca47e272dcdfeb70f933dac222.png





_images/math/b5c43322fdb886d5790f6ef76f4d623cf13f02d0.png





_images/math/bd5e77a053573f436ddbfdb7c9871cb3ffa8a5f9.png





_images/math/bc6f566e765ca9751604347bf0eb44079705c1bf.png





_images/math/bfaad92d9742787fbf8eed617a13a69d3e4ca41a.png





_images/math/bd9d9c7512c898e0a254a0882184197bc1bd9c9f.png





_images/math/5ca6e96c94833ff5f945e23a74fe889d177659d8.png





_images/math/5e02743a3f7e859a60d2d0f521cbba7bab0ca79d.png





_images/math/589f22184d1a53c3c1355c17208c8a9bb260ef46.png





_images/math/5ba12e8b48061a3e4eff0a15d83614a6e2c8ef9b.png
(I,(Vo + Vigp: P) — 1)






_images/math/633edc45c75a62604b49e361cee8bb86d145589e.png
n=eV/ET,





_images/math/66574f17175ac6653e49e6a366c119b234698149.png
1.00 - 104 m—"





_images/math/5fb3d1ba7dcffe45dc837cbaedff4b9f07e8b48e.png





_images/math/620a3ce6403ec82f1347af9985bc03f7a9382f4a.png





_images/math/66c86aaf185d79027f172496a23fd50384c57d7c.png





_images/math/afce44aa7c55836ca9345404c22fc7b599d2ed84.png





_images/math/af198cc9e8f5cd01bbefe2e68060d3fca18bd490.png





_images/math/b359488b993294ebbc2c7b30ab8f749dcbc6826d.png





_images/math/b280efc8bc8af83849e6cbc10e27680d3871e404.png





_images/math/56b265c2b2af1c967b5b6a90f0a671a4a38b7d60.png





_images/math/6f500ceaac600016f0ff3dbc3e0ffa54e4e8efbf.png





_images/math/7233d5972d42436c9da63efa1d81b786b7f323a4.png





_images/math/683f2dd9129a91d21aaf1c04afa6f78b39d4cb0a.png





_images/math/6d9768553e89a85659608e378fcce7f1eab0da30.png





_images/math/78a06cf7a34f39fde71fbba0d5539baae7c72d4e.png





_images/math/81c0541ce4026ee6fda3c64c85d32836721bdced.png





_images/math/741cfe53139844b621440e1c52338ed0c7d3af2e.png
(A, 1)





_images/math/7879a41c0f9a5f95bc525d3b98d226d0020e0499.png
2/ Ap






_images/math/fabee2d9fa305ac7db46b8b0a681f434b4a1b7e3.png





_static/ajax-loader.gif





_images/math/fae0e7a73748991e5540d874416000583f64f58e.png





_static/comment-bright.png





_static/comment.png





_static/comment-close.png





_images/math/f4170ed8938b79490d8923857962695514a8e4cb.png





_images/math/f2d283a2071f9d043c9e0b0f794a8880fa0d3ce9.png





_images/math/f69c873f4bd257deb7c95e09520680636ec2da1d.png





_images/math/f5339fd8776a3b7a951bfacc10f6c264c2722ca6.png





_images/math/671f985e0bf4acd661d32b279c25f73ac1dd4f77.png





_images/math/67c85d631b1d7e77417d5b095821fd353cc0a6e7.png
ne = f(Iy, I,

Iy





_images/math/87d5fe3ed261a4a5188efcc9b9efffaa376afe4c.png
eV /ET





_images/math/89a0078e31a79d15c854f9c91d741a5a62638fc9.png





_images/math/875eb40014526135383caa89fd500ae40a835f56.png





_images/math/877d234f4cec6974ce218fc2e975a486a7972dfd.png





_images/math/9192c0083973a9fc98f65c8dba800e0ea495fc03.png





_images/math/8b83478bde14181e067601cb9ed683877ad7f26c.png





_images/math/90d475b242bfc80a436eaaeabadccd499e8fc2a7.png





_images/math/eb5f7c525f3125c6a465983b7c6a6a752918578b.png





_images/math/eaa6ad49a7f78fe5a13b486690163bf2dc7e3e60.png





_images/math/ef5be749c1408b4804d4ff92f136cd06a7bf11fb.png
a < U.2





_images/math/ebf5ba698bb691973608e59702532265bedc0e0c.png
d(Inr1)/dV





_images/math/f15aedbf21ddd8bb128bed3aba29481ea0663dea.png
I /1





_images/math/f0bcae2f5c1b286a458376a5eb3a71039fdde9da.png





_images/math/d6e7c6f347433b17fb3271bab80acf39cc9b6e10.png
(Vo. P





_images/math/d2ed2630e579be280a30b6646f4d706103c337ce.png





_images/math/e11f2701c4a39c7fe543a6c4150b421d50f1c159.png





_images/math/d86a156e85d4797975fed9e864dd306e4076e326.png





_images/math/e9799ecc12ccf1a324df16fd5f01b999334c2315.png
n=gqgV/El > 1





_images/math/86d0d43f53903c077bef6d688623f71e9f1657b7.png





_images/math/873a48ccebdc2831a0445ff8c35f151cabfd7569.png





_images/math/855050f8e6ce09f0c2716ded698e80a83b3436b3.png





