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CHAPTER 1

Installation

Install from PyPI using pip (preferred method):

pip install langmuir

Or download the GitHub repository https://github.com/langmuirproject/langmuir.git and run:

python setup.py install
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CHAPTER 2

Getting Started

The Langmuir library contains a collection of functions that compute the current collected by a conductor immersed
in a plasma according to various models (characteristics). These functions take as arguments the probe geometry, for
instance Sphere, and a plasma, where a plasma may consist of one or more Species.

As an example, consider a spherical Langmuir probe of radius 𝑟 = 1mm immersed in a plasma with an electron
density of 𝑛 = 1011 m−3 and an electron temperature of 𝑇 = 1000K. The electron current collected by this probe
when it has a voltage of 𝑉 = 4.5V with respect to the background plasma is computed according to orbital motion-
limited (OML) theory as follows:

>>> OML_current(Sphere(r=1e-3), Electron(n=1e11, T=1000), V=4.5)
-5.262656728335636e-07

Let’s consider a more complete example. Below we compare the current-voltage characteristics predicted by the OML
theory and the finite-length (FL) model for a cylindrical probe with an ideal guard on one end.

from langmuir import *
import numpy as np
import matplotlib.pyplot as plt

plasma = [
Electron(n=1e11, T=1000),
Hydrogen(n=1e11, T=1000)
]

geometry = Cylinder(r=1e-3, l=60e-3, lguard=True)

V = np.linspace(-2, 2, 100)

I_OML = OML_current(geometry, plasma, V)
I_FL = finite_length_current(geometry, plasma, V)

plt.plot(V, -I_OML*1e6, label='OML')
plt.plot(V, -I_FL*1e6, label='FL')
plt.xlabel('V [V]')

(continues on next page)
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(continued from previous page)

plt.ylabel('I [uA]')
plt.legend()
plt.show()

This example demonstrates that accounting for edge effects on a probe of finite length leads to a larger collected
current. Also note that the characteristic correctly captures both the electron saturation, the electron retardation, and
the ion saturation regions. Beware that the current collected by Langmuir probes (thus going into it) is usually negative.
It is common practice, however, to invert it prior to plotting.
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CHAPTER 3

Specifying the plasma

A species is specified using a range of keyword arguments upon initialization of a Species object, for instance:

Species(Z=1, amu=16, n=1e11, T=1000)

This is a singly charged ion (𝑍 = 1) with a mass of 16AMU (atomic mass units), which corresponds to the most
abundant oxygen isotope. The density is 𝑛 = 1011 m−3, and it is Maxwellian distributed with a temperature of
𝑇 = 1000K and no drift-velocity. The full set of keywords is given below:

Quantity Keyword Units Default value
Charge q Coulombs elementary charge

Z elementary charges
Mass m kilograms electron mass

amu atomic mass units
Density n partices per cubic meter 1011 m−3

Temperature/thermal speed T Kelvin 1000K
eV electron-volts
vth meters per second

Spectral index kappa kappa dimensionless ∞ (float('inf'))
Spectral index alpha alpha dimensionless 0

Kappa, Cairns or Kappa-Cairns distributed particles are obtained by specifying kappa, alpha, or both, respectively.
Maxwell, Kappa and Cairns distributions are all limiting cases of the Kappa-Cairns distribution [Darian].

For convenience, the following subclasses of Species exist:

• Electron

• Proton

• Positron

• Antiproton

• Vogon
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• Hydrogen

• Helium

• Lithium

• and similar for the rest of the periodic table

The only difference from Species is that these have different default charge and mass to represent the named
element. Oxygen for instance, defaults to singly charged oxygen of the most abundant isotope. Hence the example
in the beginning of this section could also have been written:

Oxygen(n=1e11, T=1000)

Finally, a multi-species plasma is represented as a list of its constituents. A typical Oxygen plasma would for instance
be:

plasma = [
Electron(n=1e11, T=1000),
Oxygen(n=1e11, T=1000)
]

3.1 Quick computations of plasma parameters

The Langmuir library is also suitable for doing quick computations of fundamental plasma parameters, since
Species computes these upon initialization. One example is calculating the electron Debye length of a certain
plasma:

>>> Electron(n=1e11, T=1000).debye
0.00690089806774598

The Species class defines the following useful members:

Member Description
debye The Debye length
omega_p The angular plasma frequency
freq_p The linear plasma frequency
period_p The plasma period
omega_c(B) The angular cyclotron frequency
freq_c(B) The linear cyclotron frequency
period_c(B) The cyclotron period
larmor(B) The larmor radius

The latter four members are methods which take the magnitude of the magnetic flux density as an argument. In
addition, every valid keyword argument of the constructor is also a valid member. This may conveniently be used for
instance to convert a temperature from electron-volts to Kelvin:

>>> Species(eV=0.2).T
2320.9036243100163

In this case we only specified the input eV, since we know that temperature do not depend on density.

Finally, the total Debye length of a plasma consisting of multiple species can be obtained using the debye() function.
For the oxygen plasma mentioned previously:
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>>> debye(plasma)
0.004879671013271479

Note that Langmuir uses the correct expression for the Debye length also for general Kappa-Cairns distributed plasmas
[Darian].

3.1. Quick computations of plasma parameters 7
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CHAPTER 4

Specifying the geometry

Langmuir supports three probe geometries, with self-descriptive names:

• Plane(A) represents a planar probe with surface area A.

• Cylinder(r, l, lguard=0, rguard=0) represents a cylindrical probe of radius r and length l. The
optional arguments lguard and rguard may be used to specify the length of the left and right guards, respec-
tively. Setting them to float('inf') or True means that there is an ideal guard.

• Sphere(r) represents a spherical probe of radius r.

All dimensions are in SI units. Not all models may be able to support all geometries, and only the finite-length model
makes use of the guard feature.
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CHAPTER 5

Characteristic models

Langmuir comes with several models for the characteristic 𝐼(𝑉 ) of Langmuir probes. Each model is represented by a
function which, in addition to the voltage V, take a geometry and a species argument. The models have similar
signatures and can often be interchanged. geometry is one of the previously mentioned probe geometries (Plane,
Cylinder or Sphere), and the species argument is either a single Species object, or a list of Species. If it
is a single species, the return value is the current collected from that species alone. This may be sufficient in regimes
where the current is dominated by the collection of one species. If the species argument it is a list of species, it is
the sum of the currents from all species (there is currently no model which accounts for non-linear coupling between
species). If both ions and electrons are included, the characteristics captures both the electron saturation, electron
retardation and ion saturation regimes. The model functions also have arguments eta and normalization which
will be covered in Normalization.

5.1 Analytical theories

5.1.1 The orbital motion-limited (OML) theory

The orbital motion-limited (OML) theory is the de-facto standard theory for current collection of a Langmuir probe,
and is implemented as the following function:

OML_current(geometry, species, V=None, eta=None, normalization=None)

Assuming a small probe radius compared to the Debye shielding distance, i.e., the thick sheath approximation, the cur-
rent collected by a probe in a plasma can be calculated based on orbital trajectories within the sheath. The derivations
of the implemented analytical expressions assumes:

1. a collisionless plasma

2. a non-drifting Kappa-Cairns-distributed plasma

3. a non-magnetized plasma

4. small probe radius (if spherical or cylindrical) compared to the Debye length

5. large probe length (if cylindrical), or large extent (if planar) compared to the Debye length
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It is worth remarking that the Maxwell, Kappa and Cairns distributions are special cases of the Kappa-Cairns distribu-
tions and are therefore also covered [Darian]. Moreover, no assumptions are made on the voltage range.

Radii up to 0.2 Debye lengths (for spherical probes) or 1.0 Debye lengths (for cylindrical probes) typically satisfy the
small radius criterion well [Laframboise]. Cylindrical probes need to be very long, however, to satisfy the long probe
criterion [Marholm]. Other models in Langmuir overcome some of the limitations of the OML theory.

For more information on OML theory, see [MottSmith] for the original derivation, or [Darian] for the more general
derivation with Kappa-Cairns distribution.

5.1.2 Thermal currents and the sheath-limited (SL) theory

A probe at zero voltage with respect to the background plasma do not accelerate particles, but nevertheless collects a
current due to the random thermal motion of particles through the surface of the probe. This is implemented in the
following function:

thermal_current(geometry, species, normalization=None)

This coincides with the OML theory not only for zero voltage, but also for planar probes. This can be understood
from the fact that for planar probes, the effective collection area (the sheath boundary) do not increase as the voltage
increases and the sheath thickness increases, but remains of the same area.

The sheath-limited (SL) theory makes the same assumptions as the OML theory, except that the probe radius is large
compared to the Debye length (thin sheath approximation). With these approximations, the current collected is 𝑎/𝑟
times the thermal current, where 𝑎 is the distance from the center of the probe to the edge (in some sense) of the sheath
surrounding the probe, and 𝑟 is the probe radius. For spheres and cylinders an increase in voltage causes an increase in
𝑎 and hence in collected current. Nevertheless, for very large probes, 𝑎/𝑟 approches unity, and thermal_current may
be used as an approximation. In this case, the probe can be understod to be locally flat.

5.2 Normalization

The characteristics of Langmuir probes do not depend on every conceivable parameter such as density, temperature,
probe length, etc. independently, but instead upon a smaller set of non-dimensional groups (𝜋-groups) of such param-
eters [Laframboise], [Marholm]. One such group is the normalized voltage:

𝜂 = −𝑞𝑉

𝑘𝑇

where 𝑞 and 𝑇 are the charge and temperature of the collected species, 𝑉 is the voltage, and 𝑘 is Boltzmann’s constant
(for 𝜂 > 0 the species is attracted, and for 𝜂 < 0 it is repelled). It may therefore be of interest to study an entire class
of problems with the same normalized parameters instead of a specific case. In Langmuir one may specify normalized
voltages by using the argument eta instead of V in models such as OML_current.

Similarly, a normalized current 𝐼/𝐼0 may be defined, where 𝐼 is the collected current and 𝐼0 is a characteristic current.
The models in Langmuir may return currents normalized by one of several possible characteristic currents depending
on the value of the normalization argument:

• 'th': Normalized by the thermal current. Often the most natural choice.

• 'oml': Normalized by the current according to the OML theory. This is useful for comparing other models
with OML theory.

• 'thmax': Normalized by the thermal current of a Maxwellian plasma regardless of what the distribution
actually is. This is the normalization used in [Darian].

Finally, all lengths are normalized by the Debye length 𝜆𝐷. Below is a complete example of obtaining the normalized
current for a cylindrical probe of radius 0.2𝜆𝐷 and length 10𝜆𝐷 with 𝜂 = 10:
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>>> sp = Species()
>>> geometry = Cylinder(r=0.2*sp.debye, l=10*sp.debye)
>>> OML_current(geometry, sp, eta=10, normalization='th')
3.7388259506315147

Since only the non-dimensional groups determine the normalized collected current, we do not care about the exact
parameters of the species, but leave them at the default. Note that in this case it actually does not matter what the
probe size is, because the thermal current depends on the probe size in the same way as the current predicted by OML
theory. This may differ for other models, however.

Note that the non-dimensional groups are specific to each species, e.g., the voltage normalized with respect to electrons
is not the same as with respect to ions. If a multi-species plasma is specified, the normalization used will be with respect
to the first species in the list. E.g., if electrons are the first element in the list, 𝜂 = 𝑒𝑉/𝑘𝑇𝑒 where 𝑒 is the elementary
charge and 𝑇𝑒 is the electron temperature.

5.3 Finite length models

The two finite-length models are based on theoretical scaling laws and numerical simulations, and accounts for edge
effects on cylindrical probes. They assume a collisionless, non-magnetized and non-drifting Maxwellian plasmas, as
well as a small probe radius. However, they can account for probes of arbitrary length, all the way down to below
the Debye length (at which point the probes behave as if they were spherical). The models are valid for normalized
voltages up to 100. See [Marholm] for a full description.

5.3.1 Current per unit length

The first model describes not the total collected current, but the current 𝑖(𝑧) per unit length, as a function of the position
𝑧 on the probe, and has the following signature:

finite_length_current_density(geometry, species, V=None, eta=None, z=None, zeta=None,
→˓normalization=None)

This model has an additional argument z, which is the position on the probe, starting at zero. Alternatively, one may
use the normalized position zeta, defined as 𝜁 = 𝑧/𝜆𝐷. Below is an example for a 40-mm probe with both ends
free:

from langmuir import *
import numpy as np
import matplotlib.pyplot as plt

elec = Electron(n=1e11, T=1000)
l = 40e-3
z = np.linspace(0,l,100)

geo = Cylinder(r=0.25e-3, l=l)
i = finite_length_current_density(geo, elec, V=5, z=z)

plt.plot(z*1e3, -i*1e6)
plt.xlabel('z [mm]')
plt.ylabel('i [nA/mm]')
plt.show()
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The end effects from the two ends are quite severe, and they even overlap. In reality, however, one end of the probe
must necessarily be attached to something, and this is usually a guard. Ideally, a guard is an infinite cylindrical
extension of the probe at the same voltage as the probe, but electrically insulated from it, such that current collected
by the guard is not included in the measurements. This is supposed to remove end effects from this end of the probe.
It is possible to enable ideal guards by setting either lguard (left guard) or rguard (right guard) in Cylinder to
True or float('inf'). In the modified example below, we include a guard to the left of the probe, and we also
plot the current collected by the nearest part of the guard:

from langmuir import *
import numpy as np
import matplotlib.pyplot as plt

elec = Electron(n=1e11, T=1000)

l_probe = 40e-3
l_guard = 25e-3
z_probe = np.linspace(0, l_probe, 100)
z_guard = np.linspace(-l_guard, 0, 100)

geo = Cylinder(r=0.25e-3, l=l_probe, lguard=True)
i_probe = finite_length_current_density(geo, elec, V=5, z=z_probe)
i_guard = finite_length_current_density(geo, elec, V=5, z=z_guard)

plt.plot(z_probe*1e3, -i_probe*1e6)
plt.plot(z_guard*1e3, -i_guard*1e6, ':C0')

(continues on next page)
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(continued from previous page)

plt.xlabel('z [mm]')
plt.ylabel('i [nA/mm]')
plt.show()

If finite values are used for lguard or rguard, the end of the guard pointing away from the probe will assume end
effects similar to that of a free cylindrical end, and these end effects may extend into the probe if the guard is short. In
reality a guard will often be mounted on a spacecraft or some arbitrary body, which will lead to a different end effect
than that of a free end. Due to the arbitraryness of this end effect, it cannot be predicted by the finite-length model. For
this reason, and because the model is believed to be more accurate for large probe plus guard lengths (see [Marholm]),
it is advisable to specify ideal guards in most cases. For the same reasons, it is also advisable that instruments be
designed with long guards (long probes are in fact less important, since their non-ideal effects can be predicted).

5.3.2 Total collected current

The second model describes the total collected current, and is merely the integral of the current per unit length. Its
signature is as follows:

finite_length_current(geometry, species, V=None, eta=None, normalization=None,
→˓interpolate='I')

See example of use in Getting Started.

5.3. Finite length models 15
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5.3.3 Behind the curtains

This section describes implementation details beyond what is mentioned in [Marholm]. The current per unit length in
the finite-length model (finite_length_current_density) is given by the following expression [Marholm]:

𝑖(𝑧) = 𝑖OML 𝑔(𝜁;𝜆, 𝜂)

where 𝑖OML is the current per unit length according to the OML theory, and

𝜁 =
𝑧

𝜆𝐷
, 𝜆 =

𝑙

𝜆𝐷
, 𝜂 = −𝑞𝑉

𝑘𝑇

are the non-dimensional groups. 𝑧 is the position on the probe, which spans from 0 to 𝑙. Moreover,

𝑔(𝜁) = 𝐶(1 + ℎ(𝜁) + ℎ(𝜆− 𝜁))

ℎ(𝜁) = 𝐴(𝜁 − 𝛿 + 𝛼−1) exp(−𝛼𝜁)

where 𝐴, 𝐶, 𝛼 and 𝛿 are coefficients that are known for fixed pairs (𝜆, 𝜂) on a regular grid.

For probes with guards, the total normalized length is taken to be 𝜆 = 𝜆𝑙+𝜆𝑝+𝜆𝑟, where 𝜆𝑙 and 𝜆𝑟 are the normalized
lengths of the left and right guards, respectively, whereas 𝜆𝑝 is the normalized length of the actual probe. The end
effects still have the same shape, but are (partially) absorbed by the guards. However, in Langmuir the origin is shifted,
such that the zeta parameter is actually 𝜁𝑝 = 𝜁 −𝜆𝑙. With this shift, the probe strecthes from 𝜁𝑝 = 0 to 𝜁𝑝 = 𝜆𝑝, and
the guards extend beyond this range on either side. The 𝑔-function may be re-written as a function of 𝜁𝑝:

𝑔(𝜁𝑝) = 𝐶(1 + ℎ(𝜆𝑙 + 𝜁𝑝) + ℎ(𝜆𝑝 + 𝜆𝑟 − 𝜁𝑝))

The total current collected by the probe (finite_length_current) is obtained by integrating 𝑖(𝑧) over the
probe, excluding the guards,

𝐼 = 𝑖OML𝜆𝐷𝐺

𝐺 =

∫︁ 𝜆𝑝

0

𝑔(𝜁𝑝) d𝜁𝑝 = 𝐶(𝜆𝑝 +𝐻(𝜆𝑝 + 𝜆𝑙) +𝐻(𝜆𝑝 + 𝜆𝑟)−𝐻(𝜆𝑙)−𝐻(𝜆𝑟))

𝐻(𝜁) = 𝐴
𝛼(𝛿 − 𝜁)− 2

𝛼2
exp(−𝛼𝜁)

The shift of origin is not only convenient, but eliminates the need to subtract 𝜆𝑙 from 𝜆𝑙 + 𝜆𝑝, which could lead to
issues of numerical accuracy when 𝜆𝑙 is large, or even tends to infinity. The above expressions, on the other hand,
have no such differences, and behave gracefully as the guard lengths increases to infinity.

For parameters (𝜆, 𝜂) not on the regular grid in parameter space, interpolation is necessary. One alternative is to
linearly interpolate the coefficients 𝐴, 𝐶, 𝛼 and 𝛿. However, as described in [Marholm] this may not behave well for
short probe plus guard lengths. For the total collected currents it is also possible to calculate 𝐼 for the four nearest
parameters (𝜆, 𝜂) on the grid, and interpolate 𝐼 linearly. This gives a smoother result, since 𝐼 then varies linearly
with (𝜆, 𝜂). This is now the default behaviour, but 𝐼 may still be derived from interpolated coefficients by setting
interpolate='g' in finite_length_current.

5.4 Finite radius models

Finite radius models relax the restriction on the OML theory that the radius should be small, and may be accessed
through the following function:

finite_radius_current(geometry, species, V=None, eta=None, table='laframboise-darian-
→˓marholm', normalization=None)

Example of use:
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from langmuir import *
import numpy as np
import matplotlib.pyplot as plt

plasma = Electron(n=1e11, T=1000)
geometry = Sphere(r=5*debye(plasma))

V = np.linspace(0, 2, 100)

I_OML = OML_current(geometry, plasma, V)
I_FR = finite_radius_current(geometry, plasma, V)

plt.plot(V, -I_OML*1e6, label='OML')
plt.plot(V, -I_FR*1e6, label='FR')
plt.xlabel('V [V]')
plt.ylabel('I [uA]')
plt.legend()
plt.show()

The model is built from two sets of tabulated numerical results, which can be found in [Laframboise] and [Darian].
The former is more accurate but covers only Maxwellian plasmas, whereas the latter covers the more general Kappa-
Cairns distributions. By default interpolation between tabulated values will use the most accurate values. The model
is valid for 0 ≤ 𝜂 ≤ 25, 𝜅 ≥ 4 and 𝛼 ≤ 0.2. Probe radii extends up to 10 Debye lengths, or even 100 Debye lengths
as the distribution approaches Maxwellian.

5.4. Finite radius models 17
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CHAPTER 6

Examples

6.1 Numerically solving for the floating potential

In this example we consider how to numerically obtain the floating potential by means of a root solver. We shall
consider a sphere situated in a hydrogen plasma, which is known to have a floating potential of −2.5𝑘𝑇/𝑒, where 𝑘
is Boltzmann’s constant, 𝑇 is the temperature, and 𝑒 is the elementary charge [Whipple]. The code for the example is
given below:

from langmuir import *
from scipy.constants import value as constants
from scipy.optimize import root_scalar

n=1e11
T=1000
e = constants('elementary charge')
k = constants('Boltzmann constant')

plasma = [Electron(n=n, T=T),
Hydrogen(n=n, T=T)]

geometry = Sphere(r=0.2*debye(plasma))

def res(V):
return OML_current(geometry, plasma, V)

sol = root_scalar(res, x0=-3, x1=0)

print(sol.root)
print(-2.5*k*T/e)

The requirement for a steady floating potential is that the net current into the object, by all species, is zero. Otherwise
the potential would increase or decrease. Thus, in our case we seek to find the root of the characteristic, which we take
as OML_current in the example above. The function root_scalar from SciPy iterates on the value V of res
within the range (−3, 0), until it returns a value that is sufficiently close to zero, i.e., the root of OML_current. The
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script returns:

-0.2157892685234552
-0.21543333155362945

and hence is in excellent agreement with previous results.

6.2 Fitting beta for a finite-length probe

For large voltages, 𝜂 = 𝑞𝑉/𝑘𝑇 ≫ 1, the normalized current collected from the attracted species according to the
OML theory may be written as power law:

𝐼

𝐼th
≈ 𝑐𝜂𝛽

where 𝛽 is 0, 0.5 or 1 for a plane, cylinder or sphere, respectively. It is customary to use this same expression for probes
of finite length as well, but with 𝛽 varying between 0.5 and 1. This example demonstrates how to use a standard curve
fitting algorithm to find 𝛽 for a cylindrical probe of ten Debye lengths:

from langmuir import *
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit

elec = Electron()
eta = np.linspace(10,100,100)
geo = Cylinder(r=0.1*elec.debye, l=10*elec.debye)
I = finite_length_current(geo, elec, eta=eta, normalization='th')

def power_law(eta, c, beta):
return c*eta**beta

popt, pcov = curve_fit(power_law, eta, I)

plt.plot(eta, I, label='Finite-length model')
plt.plot(eta, power_law(eta, *popt), ':k',

label=r'Power law ($c={:.2f}, \beta={:.2f})$'.format(*popt))

plt.xlabel(r'$\eta$')
plt.ylabel(r'$I/I_\mathrm{th}$')
plt.legend()
plt.show()
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In the code we start by evaluating the charactersitic at 100 points along 𝜂 ∈ [10, 100). Note that we keep the normalized
voltage always above 10 such that the large voltage approximation is satisfied. We then define the function we want to
fit the characteristic to, power_law, with the input as the first argument, followed by an arbitrary number of fitting
coefficients (in our case two). The SciPy function curve_fit makes a best fit of these coefficients, returned in the
tuple popt. With these coefficients, the fit (dotted line) is in excellent agreement with the actual characteristic (solid
line), and 𝛽 = 0.72.

6.3 Interactive finite-length current profile

In this example the current per unit length is plotted along a cylindrical probe, allowing the user to interactively change
then length and voltage of the probe. All quantities are normalized.

import matplotlib
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
from langmuir import *
from scipy.special import erf

normalization='OML'

elec = Electron()
geo = Cylinder(r=0.1*elec.debye, l=20*elec.debye)
z = np.linspace(0, 20, 1000)

(continues on next page)
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I = finite_length_current_density(geo, elec, zeta=z, eta=25,
→˓normalization=normalization)

len_min = 1
len_max = 40
eta_min = -10
eta_max = 100

fig, ax = plt.subplots()
plt.subplots_adjust(bottom=0.25)
line, = plt.plot(z, I)
if normalization=='th':

ax.axis([-5, len_max+5, 0.5, 20])
else:

ax.axis([-5, len_max+5, 0.5, 4.5])
ax.grid()
plt.xlabel(r'$z/\lambda_D$')
plt.ylabel(r'$I/I_\mathrm{OML}$')

ax_len = plt.axes([0.1, 0.10, 0.8, 0.03])
ax_eta = plt.axes([0.1, 0.05, 0.8, 0.03])
sl_len = Slider(ax_len, r'$l/\lambda_D$', 1, len_max, valinit=20)
sl_eta = Slider(ax_eta, r'$\eta$', eta_min, eta_max, valinit=25)

def update(val):
eta = sl_eta.val
l = sl_len.val
z = np.linspace(0, l, 1000)
geo = Cylinder(r=0.1*elec.debye, l=l*elec.debye)
I = finite_length_current_density(geo, elec, zeta=z, eta=eta,

→˓normalization=normalization)
line.set_ydata(I)
line.set_xdata(z)

sl_len.on_changed(update)
sl_eta.on_changed(update)

plt.show()

6.4 Inferring plasma parameters from measurements

The purpose of Langmuir probes is to measure plasma parameters, such as the electron and ion densities, and the
electron temperature. The traditional techniques rely on OML theory, which predicts that the characteristic behaves
differently in different regions of the probe voltage. For voltages between the floating potential and the background
plasma potential (here taken to be zero), for instance, the ion current can be neglected and the OML theory then predicts
a slope d(ln 𝐼)/d𝑉 depending only on the electron temperature, as well as some physical constants. Doing a voltage
sweep across this region therefore allows the determination of the electron temperature. Further on, in the electron
(ion) saturation region, the ions (electrons) can be neglected, and the analytical expressions of the remaining part
allows determination of the electron (ion) density, once the electron temperature is known [Marholm2], [Bekkeng],
[MottSmith], [Bittencourt].
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Another technique is that of Jacobsen and Bekkeng for the multineedle Langmuir probe (m-NLP) instrument
[Jacobsen]. The m-NLP instrument consists of at least two (typically four) cylindrical Langmuir probes biased at
different fixed positive voltages with respect to a spacecraft. The OML theory predicts that the slope d𝐼2/d𝑉 depends
only on the electron density, except for known physical constants. The m-NLP instrument thus allows inferring the
electron density without sweeping the voltage, which gives the m-NLP instrument faster sampling times and thus
higher spatial resolution while spaceborn than swept Langmuir probes. A fast implementation of this density infer-
ence technique is readily available in Langmuir. Given an 𝑁 × 4 array I, where each row corresponds to the currents
measured at some time instant by probes biased at, say, 2, 3, 4, and 5 volts with respect to some common reference
voltage, the densities can be inferred as follows:

n = jacobsen_density(Cylinder(r=0.255e-3, l=25e-3), [2,3,4,5], I)

The main problem with these approaches is that they rely upon specific analytic expressions for the characteristic,
which may not hold for non-ideal cases (finite length, finite radius, collisional or non-Maxwellian plasmas). Another
problem is in identifying the different regions. In spaceborn Langmuir probes, for instance, the probe voltage is only
known with respect to the spacecraft, and not with respect to the background plasma.

6.4.1 A general formulation

In relation to the Langmuir software we take a more general point of view [Marholm2]. Consider that a set of currents
{𝐼𝑝}𝑁𝑝=1 have been measured in a plasma. The currents may for instance be the currents corresponding to different
voltages of a swept Langmuir probe, or it may be the currents collected by different probes, such as in the m-NLP
instrument. For the sake of generality, we allow each measurement to obey a different characteristic function, which
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we denote 𝐼𝑝(𝑉𝑝;P). 𝑉𝑝 is the probe voltage at which the current was measured, and P is a vector of other parameters
that the characteristics depend upon, such as electron temperature and density. The probe voltage is often not known
with respect to the background plasma, but instead with respect to a common reference voltage 𝑉0. For spaceborn
instruments this is the spacecraft floating potential. With this, we may write 𝑉𝑝 = 𝑉0 + 𝑉0𝑝, and the measurements
form the following system of equations:

𝐼𝑝 = 𝐼𝑝(𝑉0 + 𝑉0𝑝;P), 𝑝 = 1, ..., 𝑁

This set of equations may be solved for the unknowns (𝑉0,P) by any suitable numerical method (insofar as it is well-
posed), and there is a wide range of free software available depending on how this system is to be solved. However, it
requires programmatic access to the characteristics 𝐼𝑝(𝑉𝑝;P). Computing the currents for given physical parameters
may be considered the forward problem, and it is a prerequisite for solving the inverse problem, namely inferring
physical parameters from measured currents. Langmuir focuses on the forward problem. In the following, however,
we give a few examples of attacking the inverse problem.

6.4.2 Synthetic data

For experimentation, the following function can be used to generate a test set of synthetic currents:

generate_synthetic_data(geometry,
V,
model=finite_length_current,
V0=None,
alt_range=(100,500),
noise=1e-5)

The currents are synthesized assuming densities from IRI [IRI] and temperatures from MSIS [MSIS] for 45 degrees
latitude, 0 degrees longitude, and altitudes within the range given by alt_range at local noon. The advantage of
synthetic data is that since the ground truth is known, it can be used to measure the accuracy of the inversion. Beware,
however, that generate_synthetic_data necessarily must use some model to generate the currents (given by
model), and the net accuracy of the final inferred parameters will depend both on the accuracy of the inversion and
of the forward model for the problem at hand.

generate_synthetic_data will also add noise proportional to the square root of the signal strength and the
factor noise for a representative signal-to-noise ratio [Ikezi], as well as generate a synthetic floating potential. Al-
ternatively the floating potential can be preset by the argument V0. For a given geometry and array of bias voltages
V, the function returns a dictionary with the following arrays:

• alt: Altitude of the data samples [km]

• I: Synthetic current measurements [A], one column for each bias voltage

• V0: Ground truth, floating potential [V]

• Te: Ground truth, electron temperature [K]

• Ti: Ground truth, ion temperature [K]

• ne: Ground truth, electron density [1/m^3]

• nO+: Ground truth, density of oxygen ions [1/m^3]

• nO2+: Ground truth, density of doubly charged oxygen ions [1/m^3]

• nNO+: Ground truth, density of nitrosonium ions [1/m^3]

• nH+: Ground truth, density of hydrogen ions [1/m^3]
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6.4.3 Inversion by least-squares curve fitting

In this section we consider how to infer electron density and floating potential from current measurements by an
iterative non-linear least squares curve fitting algorithm. Least-squares fitting works by minimizing a sum of squared
residuals 𝑟𝑝,

𝑅 =
∑︁
𝑝

𝑟2𝑝

with respect to the fitting coefficients which in our case is (𝑛𝑒, 𝑉0). The residuals, we take as

𝑟𝑝 = (𝐼𝑝(𝑉0 + 𝑉0𝑝;P)− 𝐼𝑝)

such that a perfect solution yields 𝑅 = 0.

We shall assume a 4-NLP instrument with bias voltages 𝑉0𝑝 of 2, 3, 4 and 5 volts with respect to the unknown floating
potential 𝑉0. There will then be four residuals per time sample, and in order to use SciPy’s least_squares function
we need to define a function residual returning a vector of these four residuals when given an approximation of the
coefficients 𝑥 = (𝑛𝑒, 𝑉0) as its first argument.

To begin with, it is advisibale to verify the method on a simpler case. We therefore assume that OML
theory is a perfect representation of reality, and use it to generate synthetic ground truth data along with
generate_synthetic_data. We then do the least-squares fit of the synthesized currents to the OML char-
acteristic (𝐼𝑝 is given by OML_current), and verify that we are able to make predictions close to the ground truth.
The code reads as follows:

from langmuir import *
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import least_squares
from tqdm import tqdm

geometry = Cylinder(r=0.255e-3, l=25e-3, lguard=True)
V = np.array([2,3,4,5])

model_truth = OML_current
model_pred = OML_current

data = generate_synthetic_data(geometry, V, model=model_truth)

alt = data['alt']
ne_jacobsen = jacobsen_density(geometry, V, data['I'])
ne_fit = np.zeros_like(alt)
V0_fit = np.zeros_like(alt)

def residual(x, I, T):
n, V0 = x
return (model_pred(geometry, Electron(n=n, T=T), V+V0) - I)*1e6

x0 = [10e10, -0.3]
x_scale = [1e10, 1]
for i in tqdm(range(len(alt))):

I = data['I'][i]
T = data['Te'][i]
T = 2000
res = least_squares(residual, x0, args=(I,T), x_scale=x_scale)
ne_fit[i], V0_fit[i] = res.x
x0 = res.x

(continues on next page)
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plot = plt.plot

plt.figure()
plot(data['ne'], alt, label='Ground truth')
plot(ne_jacobsen, alt, label='Jacobsen')
plot(ne_fit, alt, label='Fit')
plt.xlabel('Density $[\mathrm{m}^{-3}]$')
plt.ylabel('Altitude $[\mathrm{km}]$')
plt.legend()

plt.figure()
plot(data['V0'], alt, label='Ground truth')
plot(V0_fit, alt, label='Fit')
plt.xlabel('Floating potential $[\mathrm{V}]$')
plt.ylabel('Altitude $[\mathrm{km}]$')
plt.legend()

plt.show()

The loop carries out the fit over each sample, and to increase our chance of success and possibly reduce the number of
iterations required, we try to give it an initial guess x0 that is as close as possible to the true value as possible. For the
first sample this is a pre-set value, and for subsequent samples we use the previous solution.

Because numerical algorithms often work best for numbers close to unity, we also scale the coefficients (𝑛𝑒, 𝑉0).
This is conveniently handled by least_squares itself, which accepts an argument x_scale with numbers of
typical magnitude. The residuals are in the order of microampére’s and also needs to be scaled. However, although
least_squares has an argument f_scale for the residuals, it is not always in use. We therefore multiply the
residuals by 1e6 ourselves.

The residual function may also accept arguments that are not part of the optimization, in our case the four currents
stored in the vector I and the electron temperature T. These are passed through to residual using the args
argument of least_squares. Although the electron temperature is technically an unknown parameter (an input
to the forward model), it is hard to infer it because the characteristic only depends very weakly on it (see [Hoang],
[Barjatya], [Marholm2]). We therefore specify it manually. This could just be a representative number (2000K in our
case), or it could be a number from another instrument or model. For our example with synthetic data it is also possible
to use the ground truth directly, by replacing the line T = 2000 with T = data['Te'][i]. Execution results in
the following plots:
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The density agrees well with both the ground truth, as well as densities inferred with the Jacobsen-Bekkeng method.
Close inspection, however, reveals a small discrepancy between our method and the Jacobsen-Bekkeng method. This
is due to the fact that the system is overdetermined (inferring 2 parameters from 4 measurements), and the Jacobsen-
Bekkeng method minimizes a squared residual in d𝐼2/d𝑉 , whereas our method minimizes a squared residual in 𝐼
itself. Removing two of the bias voltages lead to perfect agreement. The method captures a trend in the floating
potential but cannot make accurate predictions of it.

Now that the technique is established, we can proceed by assuming that the finite-length model is a perfect represen-
tation of reality, and fitting the currents to the finite-length characteristic. This is simply a matter of substituting the
following lines:

model_truth = finite_length_current
model_pred = finite_length_current

During data synthesis we will receive warnings about the normalized voltage 𝑒𝑉/𝑘𝑇 exceeding the maximum of 100
in the finite-length model. This happens for the lower altitudes, when the temperature 𝑇 is low. It will not prevent
execution, however, but it is important to be aware of, since it means the model must extrapolate, which is less accurate
than interpolation. The resulting inference is plotted as before:
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As is to be expected, the inferred density is close to the ground truth. For finite-length effects, the inferred density is
not entirely independent of the specified temperature T, and this causes some error. The dependence is weak enough,
however, that the error is not severe. The accuracy is also degraded for lower altitudes due to the aforementioned
extrapolation. The floating potential is not very accurate, but then again, this cannot be expected when it was not
accurate for the simpler case. Finally, it is interesting to compare with the Jacobsen-Bekkeng method, since this is
indicative of the error caused by neglecting end effects.

6.4.4 Inversion by machine learning

Another way to solve the inverse problem is by machine learning, or more specifically, by regression. This was first
described in [Chalaturnyk] and [Guthrie], and we shall carry out a similar (though not entirely identical) procedure
here. We consider a plasma parameter (here: the electron density 𝑛𝑒) to be approximated by some function 𝑓 of
measured currents:

𝑛𝑒 = 𝑓(𝐼1, 𝐼2, ..., 𝐼𝑁 )

The function represents, in our case, a machine learning network, and has a number of coefficients that will be deter-
mined by fitting (training) it to synthetic data with known densities 𝑛𝑒. Once the network is trained, it can be used to
predict densities �̂�𝑒 from actual measurements. The procedure can be split in three parts, as seen in the example code:

#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
import langmuir as l

(continues on next page)
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from tqdm import tqdm
from itertools import count
from localreg import RBFnet, plot_corr
from localreg.metrics import rms_rel_error

geo = l.Cylinder(r=0.255e-3, l=25e-3, lguard=float('inf'))
model = l.finite_length_current
Vs = np.array([2, 3, 4, 5]) # bias voltages

"""
PART 1: GENERATE SYNTHETIC DATA USING LANGMUIR
"""

def rand_uniform(N, range):
"""Generate N uniformly distributed numbers in range"""
return range[0]+(range[1]-range[0])*np.random.rand(N)

def rand_log(N, range):
"""Generate N logarithmically distributed numbers in range"""
x = rand_uniform(N, np.log(range))
return np.exp(x)

N = 1000
ns = rand_log(N, [1e11, 12e11]) # densities
Ts = rand_uniform(N, [800, 2500]) # temperatures
V0s = rand_uniform(N, [-3, 0]) # floating potentials

# Generate probe currents corresponding to plasma parameters
Is = np.zeros((N,len(Vs)))
for i, n, T, V0 in zip(count(), ns, Ts, tqdm(V0s)):

Is[i] = model(geo, l.Electron(n=n, T=T), V=V0+Vs)

"""
PART 2: TRAIN AND TEST THE REGRESSION NETWORK
"""

# Use M first data points for training, the rest for testing.
M = int(0.8*N)

# Train by minimizing relative error in density
net = RBFnet()
net.train(Is[:M], ns[:M], num=20, relative=True, measure=rms_rel_error)

# Plot and print error metrics on test data
pred = net.predict(Is[M:])

fig, ax = plt.subplots()
plot_corr(ax, ns[M:], pred, log=True)
print("RMS of relative density error: {:.1f}%".format(100*rms_rel_error(ns[M:],
→˓pred)))

"""
PART 3: PREDICT PLASMA PARAMETERS FROM ACTUAL DATA
"""

data = l.generate_synthetic_data(geo, Vs, model=model)
pred = net.predict(data['I'])

(continues on next page)
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plt.figure()
plt.plot(data['ne'], data['alt'], label='Ground truth')
plt.plot(pred, data['alt'], label='Predicted')
plt.xlabel('Density $[\mathrm{m}^{-3}]$')
plt.ylabel('Altitude $[\mathrm{km}]$')
plt.legend()

plt.show()

First, 𝑁 synthetic data points are generated by randomly selecting densities (𝑛 s), temperatures (𝑇 s) and floating
potentials (𝑉0 s) from appropriate ranges, and computing corresponding currents using Langmuir. Beware that if the
ranges do not properly cover the values expected in the actual data, the network may have to extrapolate, which usually
result in inaccurate predictions.

Second, we train a regression network. We use a radial basis function (RBF) network from the localreg library
for closer proximity to the above-mentioned research, although one could also use TensorFlow or other alternatives.
Remember, however, that from a machine learning point-of-view, this is a small problem that is not well served by deep
neural networks with many degrees of freedom. Regardless of choice, it is important to test the network’s performance
(quantitatively!) on data which was not used in training. We use 80% of the synthetic data for training, and set aside
the remaining part for testing. The testing reveal that the root mean square (RMS) of the relative density error is
about 3–4% (depending on the seed of the random number generator). The correlation plot also show good agreement
between prediction and ground truth:

Third and finally, once the network has been tested, it can be used to make predictions on real data (or in our case data
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generated with generate_synthetic_data()):

For real applications it is advisable to do the last step in a separate file, using a pre-trained network that is stored as a
file for reuse.

When a parameter (e.g., the density) may span multiple orders of magnitudes, often only the most significant figures
are of interest. 1.00 ·1012 m−3 and 0.99 ·1012 m−3 are in practice indistinguishable, whereas there’s a huge difference
between 1 · 1010 m−3 and 2 · 1010 m−3, although the difference between the two pairs of numbers are the same. In
such cases it makes sense to minimize the relative error

�̂�𝑒 − 𝑛𝑒

𝑛𝑒
,

rather than the absolute error �̂�𝑒 − 𝑛𝑒. Although the range of densities in our example is not that large, we choose to
train the network using relative errors. We also distribute the training densities logarithmically, since otherwise, few
data points would have low orders of magnitude, which would lead to an under-prioritization of the accuracy of of
these lower density magnitudes.
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CHAPTER 7

Citing Langmuir

If you use Langmuir for your research, please cite the version of Langmuir you used to produce your results. Langmuir
is permanently archived with its own Digital Object Identifier (DOI) at Zenodo.

Furthermore, you should cite the works behind each model you use:

• For OML theory cite [MottSmith] for Maxwellian plasmas, or if you use Kappa-Cairns distributed plasmas,
[Darian].

• For finite-radius models cite [Laframboise] for Maxwellian plasmas, or if you use Kappa-Cairns distributed
plasmas, [Darian].

• For finite-length models cite [Marholm].
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Bibliography
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CHAPTER 9

Indices and tables

• genindex

• modindex

• search
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